Lipophilicity, Aqueous Solubility, and Degree of Ionization of Atractylodin and β-Eudesmol, the Bioactive Compounds Isolated from Atractylodes lancea

  • ANURAK CHEOYMANG
  • KESARA NA-BANGCHANG Thailand Center of Excellence for Drug Discovery and Development (TCEDDD), Thammasat University

Abstract

Objective: The study aimed to evaluate the key physicochemical properties (lipophilicity, aqueous solubility, and degree of ionization) of atractylodin and β-eudesmol using in vitro testing.


 


Methods:  Lipophilicity (Log P and Log D) was determined using the shake-flask method (n-octanol/water partition).  Aqueous solubility was determined using kinetic solubility assay in media with pH ranging from 1.2 to 7.4.  The degree of ionization (pKa) was determined using the potentiometric titration method.


 


Results: Log P and Log D values of 3.0-5.0 suggested moderate lipophilicity of both compounds. Both exhibited low aqueous solubility over the investigated pH range (0.08-0.93 and 1.97-32.48 μg/mL for atractylodin and β-eudesmol, respectively). Based on the pKa values of 9.63 (atractylodin) and 9.12 (b-eudesmol), both are classified as basidic compounds.


 


Conclusion:  Atractylodin and β-eudesmol are classified as BCS class II drugs. The physicochemical parameters of both compounds obtained from the current study will be further applied for in silico prediction of their ADME (absorption, distribution, metabolism, and excretion) properties. In addition, PBPK modeling will be applied for the prediction of optimal dose regimens of the capsule formulation of the standardized extract of Atractylodes lancea for first-in-human (FIH) and phase II studies in patients with cholangiocarcinoma.

Keywords: Atractylodin, β-eudesmol, Physicochemical properties, Atractylodes lancea

Downloads

Download data is not yet available.

References

Reference

1. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet. 2005;366(9493):1303-14.
2. National Cancer Institute. Cancer incidence in Thailand 2016. Bangkok: National Cancer Institute, 2018.
3. Forner A, Vidili G, Rengo M, Bujanda L, Ponz-Sarvise M, Lamarca A. Clinical presentation, diagnosis and staging of cholangiocarcinoma. Liver international : official journal of the International Association for the Study of the Liver. 2019;39 Suppl 1:98-107.
4. Xu K, Jiang JS, Feng ZM, Yang YN, Li L, Zang CX, et al. Bioactive Sesquiterpenoid and Polyacetylene Glycosides from Atractylodes lancea. Journal of natural products. 2016;79(6):1567-75.
5. Jun X, Fu P, Lei Y, Cheng P. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. Chinese medicine. 2018;13:59.
6. Plengsuriyakarn T, Viyanant V, Eursitthichai V, Picha P, Kupradinun P, Itharat A, et al. Anticancer activities against cholangiocarcinoma, toxicity and pharmacological activities of Thai medicinal plants in animal models. BMC complementary and alternative medicine. 2012;12:23.
7. Plengsuriyakarn T, Karbwang J, Na-Bangchang K. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of beta-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Clinical and experimental pharmacology & physiology. 2015;42(3):293-304.
8. Martviset P, Chaijaroenkul W, Muhamad P, Na-Bangchang K. Bioactive constituents isolated from Atractylodes lancea (Thunb.) DC. rhizome exhibit synergistic effect against cholangiocarcinoma cell. Journal of experimental pharmacology. 2018;10:59-64.
9. Omar AI, Plengsuriyakarn T, Chittasupho C, Na-Bangchang K. Enhanced oral bioavailability and biodistribution of atractylodin encapsulated in PLGA nanoparticle in cholangiocarcinoma. Clinical and experimental pharmacology & physiology. 2021;48(3):318-28.
10. Na-Bangchang K, Kulma I, Plengsuriyakarn T, Tharavanij T, Kotawng K, Chemung A, et al. Phase I clinical trial to evaluate the safety and pharmacokinetics of capsule formulation of the standardized extract of Atractylodes lancea. Journal of Traditional and Complementary Medicine. 2021.
11. US Food, Drug Administration. Guidance for industry: estimating the maximum safe starting dose in adult healthy volunteer. US Food and Drug Administration, Rockville, MD. 2005.
12. US Food, Drug Administration. Physiologically based pharmacokinetic analyses—format and content guidance for industry. Center for Drug Evaluation and Research, Silver Spring, MD. 2018.
13. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification. Drug metabolism and disposition: the biological fate of chemicals. 2015;43(11):1823-37.
14. Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT: pharmacometrics & systems pharmacology. 2013;2:e63.
15. Quignot N. Modeling bioavailability to organs protected by biological barriers. In silico pharmacology. 2013;1:8.
16. Loftsson T. Physicochemical Properties and Pharmacokinetics. 2015. p. 85-104.
17. Sobolev VS. Determination of Ionization Constant (pKa) and Octanol–Water Partition Coefficient (Log P) of Cyclopiazonic Acid. Journal of AOAC INTERNATIONAL. 2005;88(5):1367-70.
18. Maes E, Nikolaev V, Patek M. Kinetic Solubility: Measurement and Data Processing. Oro Valley: Analytical Department, Icagen-T Inc; 2017.
19. Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Advanced Drug Delivery Reviews. 2007;59(7):546-67.
20. Völgyi G, Ruiz R, Box K, Comer J, Bosch E, Takács-Novák K. Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: Validation study in a new cosolvent system. Analytica Chimica Acta. 2007;583(2):418-28.
21. Avdeef A, Comer JEA, Thomson SJ. pH-Metric log P. 3. Glass Electrode Calibration in Methanol-Water, Applied to pKa Determination of Water-Insoluble Substances. Analytical Chemistry. 1993;65(1):42-9.
22. Takács-Novák K, Box KJ, Avdeef A. Potentiometric pKa determination of water-insoluble compounds: validation study in methanol/water mixtures. International Journal of Pharmaceutics. 1997;151(2):235-48.
23. Shargel L, Wu-Pong S, Yu ABC. Chapter 10. Physiologic Drug Distribution and Protein Binding. Applied Biopharmaceutics & Pharmacokinetics, 6e. New York, NY: The McGraw-Hill Companies; 2012.
24. Kwon Y. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists. New York: Kluwer 2002.
25. Comer J, Tam K Lipophilicity Profiles: Theory and Measurement. In: van de Waterbeemd H, Folkers G, Guy R, editors. Pharmacokinetic optimization in drug research: Biological, physicochemical, and computational strategies. Weinheim: John Wiley & Sons; 2001. p. 275-304.
26. Valkó K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. Journal of Chromatography A. 2004;1037(1):299-310.
27. Andrés A, Rosés M, Ràfols C, Bosch E, Espinosa S, Segarra V, et al. Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts. European Journal of Pharmaceutical Sciences. 2015;76:181-91.
28. Tetko I, Poda G, Ostermann C, Mannhold R. Accurate In Silico log P Predictions: One Can't Embrace the Unembraceable. QSAR & COMBINATORIAL SCIENCE. 2009;28.
29. ChemSpider [Internet]. Cambridge: Royal Society of Chemistry; c2021. Hinesol, CSID:9054030; [cited 2021 Feb 15]. Available from: http://www.chemspider.com/Chemical-Structure.9054030.html.
30. ChemSpider [Internet]. Cambridge: Royal Society of Chemistry; c2021. Zingiberene, CSID:83751; [cited 2021 Feb 15]. Available from: http://www.chemspider.com/Chemical-Structure.83751.html.
31. ChemSpider [Internet]. Cambridge: Royal Society of Chemistry; c2021. ?-Cadinene, CSID:389830; [cited 2021 Feb 15]. Available from: http://www.chemspider.com/Chemical-Structure.389830.html.
32. ChemSpider [Internet]. Cambridge: Royal Society of Chemistry; c2021. Humulone, CSID:391214; [cited 2021 Feb 15]. Available from: http://www.chemspider.com/Chemical-Structure.391214.html.
33. ChemSpider Cambridge: Royal Society of Chemistry; c2021. Artemisinin, CSID:62060; [cited 2021 Feb 15]. Available from: http://www.chemspider.com/Chemical-Structure.62060.html.
34. ChemSpider [Internet]. Cambridge: Royal Society of Chemistry; c2021. atractylodin, CSID:4478932; [cited 2021 Feb 15]. Available from: http://www.chemspider.com/Chemical-Structure.4478932.html.
35. ChemSpider [Internet]. Cambridge: Royal Society of Chemistry; c2021. Beta-eudesmol, CSID:82584; [cited 2021 Feb 15]. Available from: http://www.chemspider.com/Chemical-Structure.82584.html.
36. PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; c2004. PubChem Compound Summary for CID 91457, beta-Eudesmol; [cited 2021 Feb 15]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Eudesmol.
37. PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; c2004. PubChem Compound Summary for CID 5321047, Atractylodin; [cited 2021 Feb 15]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Atractylodin.
38. Siew A. A dissolution method should have adequate discriminatory power to detect formulation changes that affect the dissolution rate of a drug product. Pharmaceutical Technology. 2016;40(11):56-64.
39. Dehring K, Workman H, Miller K, Mandagere A, Poole S. Automated robotic liquid handling/laser-based nephelometry system for high throughput measurement of kinetic aqueous solubility. Journal of pharmaceutical and biomedical analysis. 2004;36:447-56.
40. Saal C, Petereit A. Optimizing solubility: Kinetic versus thermodynamic solubility temptations and risks. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2012;47:589-95.
41. TGSC Information System [Internet]. The Good Scents Company; c1980. Atractylodin; [cited 2021 Feb 15]. Available from: http://www.thegoodscentscompany.com/data/rw1539051.html.
42. TGSC Information System [Internet]. The Good Scents Company; c1980. Beta-eudesmol; [cited 2021 Feb 15]. Available from: http://www.thegoodscentscompany.com/data/rw1054041.html.
43. Rattanathada T, Plengsuriyakarn T, Asasujarit R, Cheoymang A, Karbwang J, Na-Bangchang K, editors. Development of oral pharmaceutical formulation of standardized crude ethanolic extract of Atractylodes lancea (Thunb) DC2020.
44. Muhamad N, Plengsuriyakarn T, Chittasupho C, Na-Bangchang K. The Potential of Atractylodin-Loaded PLGA Nanoparticles as Chemotherapeutic for Cholangiocarcinoma. Asian Pacific journal of cancer prevention : APJCP. 2020;21(4):935-41.
45. Hou T, Wang J, Zhang W, Wang W, Xu X. Recent advances in computational prediction of drug absorption and permeability in drug discovery. Current medicinal chemistry. 2006;13(22):2653-67.
46. Martell AE, Motekaitis RJ. Determination and use of stability constants1992.
47. FooDB [Internet]. The Metabolomics Innovation Centre; c2021. beta-Eudesmol (FDB003839); [cited 2021 Feb 15]. Available from: https://foodb.ca/compounds/FDB003839.
48. ChemicalBook [Internet]. ChemicalBook Inc; c2017. HINESOL; [cited 2021 Feb 15]. Available from: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB6135964.htm.
49. Stocks M. Chapter 3 - The small molecule drug discovery process – from target selection to candidate selection. In: Ganellin R, Roberts S, Jefferis R, editors. Introduction to Biological and Small Molecule Drug Research and Development. Oxford: Elsevier; 2013. p. 81-126.
50. World Health Organization. WHO expert committee on specifications for pharmaceutical preparations. Fortieth report. World Health Organ Tech Rep Ser. 2006;937:1-461.
51. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical research. 1995;12(3):413-20.
Statistics
21 Views | Downloads
Citations
How to Cite
CHEOYMANG, A., and K. NA-BANGCHANG. “Lipophilicity, Aqueous Solubility, and Degree of Ionization of Atractylodin and β-Eudesmol, the Bioactive Compounds Isolated from Atractylodes Lancea”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 13, no. 6, Apr. 2021, doi:10.22159/ijpps.2021v13i6.41398.
Section
Original Article(s)