LIPASE INHIBITORS FROM PLANTS AND THEIR MEDICAL APPLICATIONS

  • Gurmeet Singh
  • Sukrutha Suresh
  • Venkata Krishna Bayineni
  • Ravi Kumar Kadeppagari Food Science and Technology Division, Centre for Emerging Technologies, Jain University, Jain Global Campus, Jakkasandra, Kanakapura Main Road, Ramanagara Dist., Karnataka, India, 562112

Abstract

Obesity and its related disorders have become a major concern across the world. However, there are only few medications for treating obesity. Reducing the fat absorption through the inhibition of pancreatic lipase has become most favorable strategy for treating obesity since pancreatic lipase is a safe target and its inhibition does not alter the central pathways. However, the only available pancreatic lipase inhibitor for the treatment of obesity is orlistat and it is derived from lipstatin which is produced by a microbe, Streptomyces toxytricini. Many pancreatic lipase inhibitors are reported from the plant sources and they can be classified in to saponins, phenols, terpenes, glycosides, alkaloids, carotenoids and polysaccharides. Plant pancreatic lipase inhibitors are reported to show the antiobesity effects in the animal models. However, there is no plant inhibitor in the clinical use. This review describes the different lipase inhibitors from plant sources and their effects on the obesity and its related parameters.

Keywords: Obesity, Pancreatic lipase inhibitor, Orlistat, Saponins, Phenols, Terpenes, Glycosides, Alkaloids, Carotenoids, Polysaccharides.

Downloads

Download data is not yet available.

References

1. Cooke D‚ Bloom S. The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discovery 2006;5:919–31.
2. Melnikova I‚ Wages D. Antiobesity therapies. Nat Rev Drug Discovery 2006;5:369–70.
3. Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discovery Today 2007;12:879-89.
4. Nitin A‚ Lunagariya, Neeraj K‚ Patel, Sneha C‚ Jagtap, et al. Inhibitors of pancreatic lipase: state of the art and clinical perspectives. EXCLI J 2014;13:897-921.
5. Fernandez E, Borgström B. Effects of tetrahydrolipstatin, a lipase inhibitor, on absorption of fat from the intestine of the rat. Biochim Biophys Acta 1989;1001:249-55.
6. Hauptman JB, Jeunet FS‚ Hartmann D. Initial studies in humans with the novel gastrointestinal lipase inhibitor Ro 18-0647 (tetrahydrolipstatin). Am J Clin Nutr 1992;55:309S-313S.
7. Ballinger A‚ Peikin SR. Orlistat: Its current status as ananti-obesity drug. Eur J Pharmacol 2002;440:109-17.
8. Jandacek RJ‚ Woods SC. Pharmaceutical approaches to the treatment of obesity. Drug Discovery Today 2004;15:874-80.
9. Weigle DS. Pharmacological therapy of obesity: past, present and future. J Clin Endocrinol Metab 2003;88:2462-9.
10. Yun JW. Possible anti-obesity therapeutics from nature. Rev Phytochem 2010;71:1625-41.
11. Singh A, Sarkar SR, Gaber LW, Perazella MA. Acute oxalate nephropathy associated with orlistat, a gastrointestinal lipase inhibitor. Am J Kidney Dis 2007;49:153-7.
12. Zao HL, Kim YS. Determination of the kinetic properties of platycodin D for the inhibition of pancreatic lipase using a 1,2-diglyceride-based colorimetric assay. Arch Pharm Res 2004;27:968–72.
13. Zhao HL, Sim JS, Shim SH, Ha YW, Kang SS, Kim YS. Antiobese and hypolipidemic effects of platycodin saponins in diet-induced obese rats: evidences for lipase inhibition and calorie intake restriction. Int J Obes 2005;29:983–90.
14. Han LK, Zheng YN, Yoshikawa M, Okuda H, Kimura Y. Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes. BMC Complement Altern Med 2005;5:9–18.
15. Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M, et al. Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice. Phytomed 2008;15:1140-5.
16. Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J Agric Food Chem 2007;55:2824-8.
17. Yoshizumi K, Hirano K, Ando H, Hirai Y, Ida Y, Tsuji T, et al. Lupane type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase. J Agric Food Chem 2006;54:335–41.
18. Li F, Li W, Fu H, Zhang Q, Koike K. Pancreatic lipase: Inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus. Chem Pharm Bull 2007;55:1087-9.
19. Kwon CS, Sohn HY, Kim SH, Kim JH, Son KH, Lee JS, et al. Anti-obesity effects of Dioscorea nipponica Makino with lipase inhibitory activity in rodents. Biosci Biotechnol Biochem 2003;67:1451–6.
20. Zheng Q‚ Koike K, Han LK, Okuda H, Nikaido T. New biologically active triterpenoid saponins from Scabiosa tschiliensis. J Nat Prod 2006;67:604–13.
21. Kimura H, Ogawa S, Jisaka M, Kimura Y, Katsube T, Yokota K. Identification of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata Blume) after treatment with wooden ashes and their nutraceutical activity. J Pharm Biomed Anal 2006;41:1657–65.
22. Kurihara H. Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice. Biol Pharm Bull 2003;26:383–5.
23. Han LK, Kimura Y, Kawashima M, Takaku T, Taniyama T, Hayashi T, et al. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int J Obes 2001;25:1459–64.
24. Yoshikawa M, Sugimoto S, Kato Y, Nakamura S, Wang T, Yamashita C. Acylated oleanane-type triterpene saponins with acceleration of gastrointestinal transit and inhibitory effect on pancreatic lipase from flower buds of Chinese tea plant (Camellia sinensis). Chem Biodiversity 2009;6:903-15.
25. Zheng Q, Li W, Han L, Koike K. Pancreatic lipaseinhibiting triterpenoid saponins from Gypsophila oldhamiana. Chem Pharm Bull 2007;55:646-50.
26. Sugimoto S, Nakamura S, Yamamoto S, Yamashita C, Oda Y, Matsuda H. Structures of triterpene oligoglycosides and lipase inhibitors from mate, leaves of Ilex paraguariensis. Brazilian natural med III. Chem Pharm Bull 2009;57:257-61.
27. Morikawa T, Xie Y, Asao Y, Okamoto M, Yamashita C, Muraoka O. Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak. Phytochem 2009;70:1166-72.
28. Jang DS, Lee GY, Kim J, Lee YM, Kim JM, Kim YS, et al. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch Pharm Res 2008;31:666-70.
29. Lee IA, Lee JH, Baek NI, Kim DH. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull 2005;28:2106-10.
30. Ninomiya K, Matsuda H, Shimoda H, Nishida N, Kasajima N, Yoshino T, et al. Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorg Med Chem Lett 2004;14:1943-6.
31. Bustanji Y, Al-Masri IM, Mohammad M, Hudaib M, Tawaha K, Tarazi H, et al. Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba. J Enzyme Inhib Med Chem 2011;26:453-9.
32. Ahn JH, Shin E, Liu Q, Kim SB, Choi KM, Yoo HS, et al. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity. Nat Prod Res 2013;27:1132-5.
33. Yamada K, Murata T, Kobayashi K, Miyase T, Yoshizaki F. A lipase inhibitor monoterpene and monoterpene glycosides from Monarda punctata. Phytochem 2010;71:1884-91.
34. Luyen NT, Tram LH, Hanh TTH, Binh PT, Dang NH, Minh CV. Inhibitors of α-glucosidase, α-amylase and lipase from chrysanthemum morifolium. Phytochem Lett 2013;6:322-5.
35. Kawaguchi K, Mizuno T, Aida K, Uchino K. Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas. Biosci Biotechnol Biochem 1997;61:102-4.
36. Kumar S, Alagawadi KR. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm Biol 2013;51:607-13.
37. Won SR, Kim SK, Kim YM, Lee PH, Ryu JH, Kim JW, et al. Licochalcone a: a lipase inhibitor from the roots of Glycyrrhiza uralensis. Food Res Int 2007;40:1046-50.
38. Birari RB, Gupta S, Gopi MC, Bhutani KK. Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: experimental and computational studies. Phytomed 2011;18:795-801.
39. Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, et al. Pancreatic lipase inhibition by C-glycosidic flavones isolated from Eremochloa ophiuroides. Molecules 2010;15:8251-9.
40. Kato E, Yama M, Nakagomi R, Shibata T, Hosokawa K, Kawabata J. Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica. Bioorg Med Chem Lett 2012;22:6410-2.
41. Hatano T, Yamashita A, Hashimoto T, Ito H, Kubo N, Yoshiyama M, et al. Flavan dimers with lipase inhibitory activity from Cassia nomame. Phytochem 1997;46:893-900.
42. Eom SH, Lee MS, Lee EW, Kim YM, Kim TH. Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis. Phytother Res 2013;27:148-51.
43. Habtemariam S. The anti-obesity potential of sigmoidin A. Pharm Biol 2012;50:1519-22.
44. Nakai M, Fukui Y, Asami S, Toyoda OY, Iwashita T, Shibata H, et al. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem 2005;53:4593-8.
45. Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, et al. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J Agric Food Chem 2007;55:4604-9.
46. Shin JE, Joo HM, Kim DH. 3-methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase. Biol Pharm Bull 2003;26:854-7.
47. Shin JE, Han MJ, Song MC, Baek NI, Kim DH. 5-Hydroxy-7-(4'-hydroxy-3'-methoxyphenyl)-1-phenyl-3-heptanone: a pancreatic lipase inhibitor isolated from alpinia officinarum. Biol Pharm Bull 2004;27:138-40.
48. Moreno DA, Ilic N, Poulev A, Raskin I. Effects of arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters. Life Sci 2006;78:2797-803.
49. Moreno DA, Ripoll C, Ilic N, Poulev A, Aubin C, Raskin I. Inhibition of lipid metabolic enzymes using Mangifera indica extracts. J Food Agric Environ 2006;4:21-6.
50. Moreno DA, Ilic N, Poulev A, Brasaemle DL, Fried SK, Raskin I. Inhibitory effects of grape seed extract on lipases. Nutrition 2003;19:876-9.
51. Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J Nutr 2002;132:1819-24.
52. Kim YM, Lee EW, Eom SH, Kim TH. Pancreatic lipase inhibitory stilbenoids from the roots of vitis vinifera. Int J Food Sci Nutr 2014;65:97-100.
53. Sreerama YN, Takahashi Y, Yamaki K. Phenolic antioxidants in some Vigna species of legumes and their distinct inhibitory effects on α-glucosidase and pancreatic lipase activities. J Food Sci 2012;77:C927-33.
54. Tao Y, Zhang Y, Wang Y, Cheng Y. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from lotus leaf. Anal Chim Acta 2013;785:75-81.
55. Ahn JH, Liu Q, Lee C, Ahn MJ, Yoo HS, Hwang BY. A new pancreatic lipase inhibitor from Broussonetia kanzinoki. Bioorg Med Chem Lett 2012;22:2760-3.
56. Kwon OJ, Bae JS, Lee HY, Hwang JY, Lee EW, Ito H, et al. Pancreatic lipase inhibitory gallotannins from Galla Rhois with inhibitory effects on adipocyte differentiation in 3T3-L1 cells. Molecules 2013;18:10629-38.
57. Ferreira EA, Gris EF, Rebello JM, Correia JF, de Oliveira LF, Filho DW. The 2',4',6'-trihydroxyacetophenone isolated from Myrcia multiflora has antiobesity and mixed hypolipidemic effects with the reduction of lipid intestinal absorption. Planta Med 2011;77:1569-74.
58. Kato E, Nakagomi R, Maria DPT, Puteri G, Kawabata J. Identification of hydroxychavicol and its dimers, the lipase inhibitor contained in the Indonesian spice, Eugenia polyantha. Food Chem 2013;136:1239-42.
59. Worsztynowicz P, Napierała M, Białas W, Grajek W, Olkowicz M. Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L). Proc Biochem 2014;49:1457-63.
60. Gordon J, McDougall, Nimish N, Kulkarni, Stewart D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem 2009;115:193-9.
61. Kim TH, Kim JK, Ito H, Jo C. Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg Med Chem Lett 2011;21:1512-4.
62. Habtemariam S. Antihyperlipidemic components of Cassia auriculata aerial parts: identification through in vitro studies. Phytother Res 2013;27:152-5.
63. Han L, Li W, Narimatsu S, Liu L, Fu H, Okuda H, et al. Inhibitory effects of compounds isolated from fruit of Juglans mandshurica on pancreatic lipase. J Nat Med 2007;61:184-6.
64. Wu X, He W, Zhang H, Li Y, Liu Z, He Z. Acteoside: A lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha. Food Chem 2014;142:306-10.
65. Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, et al. Pancreatic lipase inhibition by C-glycosidic flavones isolated from Eremochloa ophiuroides. Molecules 2010;15:8251-9.
66. Wikiera A, Mika M, Zyla K. Methylxanthine drugs are human pancreatic lipase inhibitors. Pol J Food Nutr Sci 2012;62:109-13.
67. Aaltonen N, Juha R Savinainen, Casandra Riera Ribas, Jani Rönkkö, Anne Kuusisto, Jani Korhonen, et al. Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase. Chem Biol 2013;20:379-90.
68. Matsumoto M, Hosokawa M, Matsukawa N, Hagio M, Shinoki A, Nishimukai M, et al. Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph ductcannulated rats. Eur J Nutr 2010;49:243-9.
69. Sumiyoshi M, Kimura Y. Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice. J Pharm Pharmacol 2006;58:201-7.
70. Kumar A, Ghanshyam S, Chauhan. Extraction and characterization of pectin from apple pomace and its evaluation as lopase (steapsin) inhibitor. Carbohydr Polym 2010;82:454-9.
71. Uchiyama S, Taniguchi Y, Saka A, Yoshida A, Yajima H. Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo. Nutr 2011;27:287-92.
72. Lee MS, Kim CT, Kim Y. Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann Nutr Metab 2009;54:151-7.
73. Kumar S, Alagawadi KR. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm Biol 2013;51:607-13.
74. Handa M, Murata T, Kobayashi K, Selenge E, Miyase T, Batkhuu J, et al. Lipase inhibitory and LDL anti-oxidative triterpenes from Abies sibirica. Phytochem 2013;86:168-75.
75. Liu S, Li D, Huang B, Chen Y, Lu X, Wang Y. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J Ethnopharm 2013;149:263-9.
76. Kazmi I, Afzal M, Rahman S, Iqbal M, Imam F, Anwar F. Antiobesity potential of ursolic acid stearoyl glucoside by inhibiting pancreatic lipase. Eur J Pharm 2013;709:28-36.
77. Satouchi K, Hirano K, Fujino O, Ikoma M, Tanaka T, Kitamura K. Lipoxygenase-1 from soybean seed inhibiting the activity of pancreatic lipase. Biosci Biotechnol Biochem 1998;62:1498-503.
Statistics
1348 Views | 1285 Downloads
How to Cite
Singh, G., S. Suresh, V. K. Bayineni, and R. K. Kadeppagari. “LIPASE INHIBITORS FROM PLANTS AND THEIR MEDICAL APPLICATIONS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 7, no. 13, Aug. 2015, pp. 1-5, https://innovareacademics.in/journals/index.php/ijpps/article/view/4177.