PREDICTION OF FUCTIONAL, STRUCTURAL AND STABILITY CHANGES INPREDICTION OF FUCTIONAL, STRUCTURAL AND STABILITY CHANGES IN PMM2 GENE ASSOCIATED WITH NEPHROTIC SYNDROME USING COMPUTATIONAL AGENE ASSOCIATED WITH NEPHROTIC SYNDROME USING COMPUTATIONAL ANALYSIS

Insilico analysis of PMM2 gene

  • JINAL M. THAKOR Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS)
  • KINNARI N. MISTRY Sardar Patel University
  • SISHIR GANG Muljibhai Patel Urological Hospital, Dr. V.V. Desai Road, Nadiad, Gujarat, INDIA
  • DHARAMSHIBHAI N. RANK Department of Animal Breeding and Genetics, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand 388110, Gujarat, India.
  • CHAITANYA G. JOSHI Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand 388110, Gujarat, India.

Abstract

Introduction: Nephrotic syndrome defines as a disorder with a group of symptoms like proteinuria, hypoalbuminemia, hyperlipidemia, and edema. PMM2 encodes phosphomannosemutase protein enzyme involved in the synthesis of N-glycan. 


Material and Methods: Different insilico analysis tools: SIFT, Polyphen, PROVEAN, SNP&GO, MetaSNP, PhDSNP, MutPred, I-Mutant, STRUM, PROCHECK-Ramachandran, COACH, and ConSurf, were used to check the effect of nsSNP on protein structure and function. 


Results: The genetic polymorphism in the PMM2 gene was retrieved from NCBI clinvar and UniProtKB. Total 20 SNPs were predicted most significant and responsible for disease-causing and decrease protein stability.


Conclusion: This study helps to find out disease-causing deleterious SNPs with different computational tools and gives information about potent SNPs. 

Keywords: nsSNPs,PMM2, Nephroticsyndrome,Insilico analysis

Downloads

Download data is not yet available.

References

[1]. Anigilaje, E. A., & Olutola, A. Prospects of genetic testing for steroid-resistant nephrotic syndrome in Nigerian children: a narrative review of challenges and opportunities. International journal of nephrology and renovascular disease 2019; 12, 119-136.
[2]. Chaudhari, C. S., Gadgil, N. M., Kumavat, P. V., Kshirsagar, G. R., & Dhamne, S. Clinicopathological study of nephrotic syndrome in Indian children: A tertiary care experience. Annals of Pathology and Laboratory Medicine 2017; 4(1), A28-38.
[3]. Benoit, G., Machuca, E., & Antignac, C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatric nephrology 2010; 25(9), 1621-1632.
[4]. Demir, E., & Caliskan, Y. Variations of type IV collagen-encoding genes in patients with histological diagnosis of focal segmental glomerulosclerosis. Pediatric Nephrology 2020; 35(6), 927-936.
[5]. Aebi, M. N-linked protein glycosylation in the ER. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2013; 1833(11), 2430-2437.
[6]. Jaeken, J., Artigas, J., Barone, R., Fiumara, A., De Koning, T. J., de Rijk-van Andel, J. F. et al. Phosphomannomutase deficiency is the main cause of carbohydrate-deficient glycoprotein syndrome with type I isoelectrofocusing pattern of serum transferrins. Journal of inherited metabolic disease 1997; 20(3), 447-449.
[7]. Hofherr, A., Wagner, C., Fedeles, S., Somlo, S., & Köttgen, M. N-glycosylation determines the abundance of the transient receptor potential channel TRPP2. Journal of Biological Chemistry 2014; 289(21), 14854-14867.
[8]. Feero, W. G., Guttmacher, A. E., & Collins, F. S. Genomic medicine—an updated primer. New England Journal of Medicine 2010; 362(21):2001-2011.
[9]. Kim, S., & Misra, A. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 2007; 9: 289-320.
[10]. Arshad, M., Bhatti, A., & John, P. Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PloS one 2018; 13(1):1-13.
[11]. Doniger, S. W., Kim, H. S., Swain, D., Corcuera, D., Williams, M., Yang, S. P., & Fay, J. C. A catalog of neutral and deleterious polymorphism in yeast. PLoS genetics 2008; 4(8):1-15
[12]. International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437(7063):1299-1320
[13]. Joshi, B. B., Koringa, P. G., Mistry, K. N., Patel, A. K., Gang, S., & Joshi, C. G. In silico analysis of functional nsSNPs in human TRPC6 gene associated with steroid resistant nephrotic syndrome. Gene 2015; 572(1), 8-16.
[14]. Mah, J. T., Low, E. S., & Lee, E. In silico SNP analysis and bioinformatics tools: a review of the state of the art to aid drug discovery. Drug discovery today 2011; 16(17-18), 800-809.
[15]. Kaur, T., Thakur, K., Singh, J., Kamboj, S. S., & Kaur, M. Identification of functional SNPs in human LGALS3 gene by in silico analyses. Egyptian Journal of Medical Human Genetics 2017; 18(4), 321-328.
[16]. Dakal, T. C., Kala, D., Dhiman, G., Yadav, V., Krokhotin, A., & Dokholyan, N. V. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Scientific reports 2017; 7(1), 1-18.
[17]. Abdelraheem, N. E., Osman, L. O., Abedlrhman, S. A., Ali, A. S., Elsadig, A. H., El_Tayeb, G. M., & Mohamed, S. B. A comprehensive in silico analysis of the functional and structural impact of non-synonymous single nucleotide polymorphisms in the human KRAS gene. American Journal of Bioinformatics Research 2016; 6(2): 32-55.
[18]. Leong, I. U., Stuckey, A., Lai, D., Skinner, J. R., & Love, D. R. Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations. BMC medical genetics 2015; 16(1),1-13.
[19]. Capriotti, E., Calabrese, R., & Casadio, R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 2006; 22(22), 2729-2734.
[20]. Li, B., Krishnan, V. G., Mort, M. E., Xin, F., Kamati, K. K., Cooper, D. N. et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 2009; 25(21), 2744-2750.
[21]. Satti, A. A., Abdelmageed, M. I., Murshed, N. S., Elfadol, N. M., Mustafa, M. I., & Makhawi, A. M. In Silico Analysis of B3GALTL Gene Reveling 13 Novel Mutations Associated with Peters'-plus syndrome. bioRxiv 2020;1-20.
[22]. Quan, L., Lv, Q., & Zhang, Y. STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics 2016; 32(19), 2936-2946.
[23]. Matur, M., Sharma, P., Khan, F. S., & Pednekar, M. Insilico studies on taste receptor gene (TAS2R38) and TAS2R38 protein interaction with ligands PTC and PROP using docking approach. IJARIIT 2017; 3, 205-209.
[24]. Rincy, V. C., Namitha, K. N., Aswathy, J., & Binuja, S. S. An InSilico Study of Novel Morpholine Derivatives for Lung Cancer, Non-Hodgkin's Lymphoma and Metastasis Melanoma. Journal of Pharmaceutical Sciences and Research 2019; 11(7), 2479-2484.
[25]. Yang, J., Roy, A., & Zhang, Y. Protein–ligand binding site recognition using complementary binding-specific substructure comparisonandsequence profile alignment. Bioinformatics 2013; 29(20), 2588-2595.
[26]. Kuure, S., Vuolteenaho, R., & Vainio, S. Kidney morphogenesis: cellular and molecular regulation. Mechanisms of development 2000; 92(1), 31-45.
[27]. Hardison, R. C., Chui, D. H., Giardine, B., Riemer, C., Patrinos, G. P., Anagnou, N. et al. HbVar: a relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Human mutation 2002; 19(3), 225-233.
[28]. Casado, M., O’Callaghan, M. M., Montero, R., Pérez-Cerdá, C., Pérez, B., Briones, P. et al. Mild clinical and biochemical phenotype in two patients with PMM2-CDG (congenital disorder of glycosylation Ia). The Cerebellum 2012; 11(2), 557-563.
[29]. Grünert, S. C., Marquardt, T., Lausch, E., Fuchs, H., Thiel, C., Sutter, M. et al. Unsuccessful intravenous D-mannose treatment in PMM2-CDG. Orphanet journal of rare diseases 2019; 14(1), 1-6.
[30]. Asteggiano, C. G., Papazoglu, M., Millón, M. B. B., Peralta, M. F., Azar, N. B., Spécola, N. S. et al. Ten years of screening for congenital disorders of glycosylation in Argentina: case studies and pitfalls. Pediatric research 2018; 84(6), 837-841.
[31]. Thirumal Kumar, D., Jain, N., Udhaya Kumar, S., George Priya Doss, C., & Zayed, H. Identification of potential inhibitors against pathogenic missense mutations of PMM2 using a structure-based virtual screening approach. Journal of Biomolecular Structure and Dynamics 2020; 1-17.
[32]. Vega, A. I., Pérez-Cerdá, C., Abia, D., Gámez, A., Briones, P., Artuch, R. et al. Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG). Journal of inherited metabolic disease 2011; 34(4), 929-939.
[33]. Yuste?Checa, P., Gámez, A., Brasil, S., Desviat, L. R., Ugarte, M., Pérez?Cerdá, C., & Pérez, B. The effects of PMM2?CDG?causing mutations on the folding, activity, and stability of the PMM2 protein. Human mutation 2015; 36(9), 851-860.
[34]. Cabezas, O. R., Flanagan, S. E., Stanescu, H., García-Martínez, E., Caswell, R., Lango-Allen, H. et al. Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter mutation in phosphomannomutase 2. Journal of the American Society of Nephrology 2017; 28(8), 2529-2539.
Statistics
4 Views | Downloads
Citations
How to Cite
THAKOR, J. M., K. N. MISTRY, S. GANG, D. N. RANK, and C. G. JOSHI. “PREDICTION OF FUCTIONAL, STRUCTURAL AND STABILITY CHANGES INPREDICTION OF FUCTIONAL, STRUCTURAL AND STABILITY CHANGES IN PMM2 GENE ASSOCIATED WITH NEPHROTIC SYNDROME USING COMPUTATIONAL AGENE ASSOCIATED WITH NEPHROTIC SYNDROME USING COMPUTATIONAL ANALYSIS: Insilico Analysis of PMM2 Gene”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 13, no. 7, June 2021, doi:10.22159/ijpps.2021v13i7.41802.
Section
Original Article(s)