EVALUATION OF SINIGRIN EFFECT IN NEUROPROTECTION AGAINST PARKINSON’S DISEASE AND NEUROPATHIC PAIN

Authors

DOI:

https://doi.org/10.22159/ijpps.2025v17i1.52699

Keywords:

Sinigrin, Neuroprotective, Excitotoxicity, Parkinson’s disease (PD), Neuropathic pain (NP), N-methyl-D-aspartate receptor (NMDARs) antagonism, Dextromethorphan, Pregabalin

Abstract

Objective: The present study aims to evaluate the neuroprotective activity of Saponin: Sinigrin against Parkinson’s disease (PD) and associated neuropathic pain in rat model. A correlation between Parkinson’s disease (PD) associated neuropathic pain and predicting antioxidant, neuroprotective effects of Saponin: Sinigrin and its interspecific relation with the underlying mechanism.

Methods: Excitotoxicity with Mono Sodium Glutamate (MSG) (2 g/kg i. p) and neurotoxicity with Acrylamide (ACR) (30 mg/kg,i. p) was induced in rats, treated with standard dextromethorphan (30 mg/kg p. o), and Pregabalin (10 mg/kg,po) and test compound (Sinigrin 75 mg/kg) were tested for behavioral parameters viz: muscle rigidity, locomotor activity, mechanical hyperalgesia, cold allodynia, etc. and biochemical estimation from brain and sciatic nerve homogenate by sacrificing animals was done. Estimation of brain neurotransmitters (Dopamine, Gamma-Amino Butyric Acid (GABA) antioxidants, Glutathione (GSH) and Catalase(CAT), and oxidative stress Super Oxide Dismutase (SOD), Nitric oxide (NO) concentration, Thiobarbituric Acid Reactive Substances (TBARS) and Myloperoxidase activity(MPO) was done. Statistical analysis was done using Analysis of Variance (ANOVA) followed by Tukey’s multiple comparison tests.

Results: Sinigrin showed a significant neuroprotective activity in rats compared to monosodium glutamate (2 gm/kg i. p. It was observed from the study that test drug Sinigrin produced a significant (p≤0.05) reduction in muscle rigidity, increased locomotor activity, left hind paw lifting duration, improved cold allodynia, and thermal hyperalgesia. Brain neurotransmitter levels antioxidant (p≤0.01) were increased and oxidative stress (p≤0.01) was also reduced to that of the standard drug dextromethorphan.

Conclusion: The study suggests that Sinigrin is neuroprotective and can be used in the treatment of Parkinson’s Disease (PD) and associated Neuropathic Pain (NP).

Downloads

Download data is not yet available.

References

Vijayakumar S, Prabhu S, Rajalakhsmi S, Manogar P. Review on potential phytocompounds in drug development for parkinson disease: a pharmacoinformatic approach. Informatics in Medicine Unlocked. 2016;5:15-25. doi: 10.1016/j.imu.2016.09.002.

Samim M, Yajamanam S, Bano N, Veeresh B, Reddy M. Neuroprotective effect of ocimum sanctum linn on rotenone induced parkinsonism in rats. Int J Pharm Res Scholars. 2014 Mar 24;3 (1):772-84.

Gomes DA Silva EG, Viana MA, Quagliato EM. Pain in parkinsons disease: analysis of 50 cases in a clinic of movement disorders. Arq Neuro Psiquiatr. 2008;66(1):26-9. doi: 10.1590/S0004-282X2008000100007.

Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988;8(1):185-96. doi: 10.1523/JNEUROSCI.08-01-00185.1988, PMID 2892896.

Defazio G, Berardelli A, Fabbrini G, Martino D, Fincati E, Fiaschi A. Pain as a nonmotor symptom of parkinson disease: evidence from a case control study. Arch Neurol. 2008;65(9):1191-4. doi: 10.1001/archneurol.2008.2, PMID 18779422.

Wang J, Wang F, Mai D, QU S. Molecular mechanisms of glutamate toxicity in parkinsons disease. Front Neurosci. 2020 Nov 26;14:585584. doi: 10.3389/fnins.2020.585584, PMID 33324150.

Raina G, Taliyan R, Sharma P. Pathophysiology of neuropathic pain: a systemic review. IJPSR. 2012 Oct 1;3(10):3530-42.

Mazumder A, Dwivedi A, DU Plessis J. Sinigrin and its therapeutic benefits. Molecules. 2016;21(4):416. doi: 10.3390/molecules21040416, PMID 27043505.

Swamy AH, Patel NL, Gadad PC, Koti BC, Patel UM, Thippeswamy AH. Neuroprotective activity of pongamia pinnata in monosodium glutamate-induced neurotoxicity in rats. Indian J Pharm Sci. 2013 Nov-Dec;75(6):657-63. PMID 24591740.

Swamy AH, Patel NL, Gadad PC, Koti BC, Patel UM, Thippeswamy AH. Neuroprotective activity of pongamia pinnata in monosodium glutamate-induced neurotoxicity in rats. Indian J Pharm Sci. 2013;75(6):657-63. PMID 24591740.

Reddy NR, Sreedevi G, Prabhavathi K, Chakravarthy IE. Spectrophotometric determination of dopamine in pharmaceutical formulations. J Anal Chem. 2005 Mar 1;60(3):252-3. doi: 10.1007/s10809-005-0080-3.

Pari L, Latha M. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipid peroxidation in STZ diabetic male wistar rats. BMC Complement Altern Med. 2004 Nov 2;4(1):16. doi: 10.1186/1472-6882-4-16.

Mehri S, Karami HV, Hassani FV, Hosseinzadeh H. Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran Biomed J. 2014;18(2):101-6. doi: 10.6091/ibj.1291.2013, PMID 24518551.

Ippoushi K, Takeuchi A, Azuma K. Sinigrin suppresses nitric oxide production in rats administered intraperitoneally with lipopolysaccharide. Food Chem. 2010 Jun 15;120(4):1119-21. doi: 10.1016/j.foodchem.2009.11.035.

Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010 Nov 15;15(11):1382-402. doi: 10.1007/s10495-010-0481-0, PMID 20213199.

Kim YS, Park HJ, Kim TK, Moon DE, Lee HJ. The effects of ginkgo biloba extract EGb 761 on mechanical and cold allodynia in a rat model of neuropathic pain. Anesth Analg. 2009 Jun;108(6):1958-63. doi: 10.1213/ane.0b013e31819f1972, PMID 19448231.

Block F, Schwarz M. Dextromethorphan reduces functional deficits and neuronal damage after global ischemia in rats. Brain Res. 1996 Nov 25;741(1-2):153-9. doi: 10.1016/s0006-8993(96)00916-x, PMID 9001717.

Muthuraman A, Singh N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain. J Ethnopharmacol. 2012 Aug 1;142(3):723-31. doi: 10.1016/j.jep.2012.05.049, PMID 22706151.

Kopanska M, Lagowska A, Kuduk B, Banas Zabczyk A. Acrylamide neurotoxicity as a possible factor responsible for inflammation in the cholinergic nervous system. Int J Mol Sci. 2022 Feb;23(4):2030. doi: 10.3390/ijms23042030, PMID 35216144.

Sydney M, Brandon M, Cheng W. Neuron-specific toxicity of chronic acrylamide exposure in C. elegans. Neurotoxicol Teratol. 2020 Jan-Feb;77:106848.

LI J, LI D, Yang Y, XU T, LI P, HE D. Acrylamide induces locomotor defects and degeneration of dopamine neurons in caenorhabditis elegans. J Appl Toxicol. 2016;36(1):60-7. doi: 10.1002/jat.3144, PMID 25876170.

Thiagarajan VR, Shanmugam P, Krishnan UM, Muthuraman A, Singh N. Ameliorative potential of butea monosperma on chronic constriction injury of sciatic nerve induced neuropathic pain in rats. An Acad Bras Cienc. 2012 Apr 13;84(4):1091-104. doi: 10.1590/S0001-37652012005000063.

Bauer CS, Nieto Rostro M, Rahman W, Tran Van Minh A, Ferron L, Douglas L. The increased trafficking of the calcium channel subunit α2δ-1 to presynaptic terminals in neuropathic pain is inhibited by the α2δ ligand pregabalin. J Neurosci. 2009;29(13):4076-88. doi: 10.1523/JNEUROSCI.0356-09.2009, PMID 19339603.

Kulich SM, Chu CT. Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for parkinson’s disease. J Neurochem. 2001 May;77(4):1058-66. doi: 10.1046/j.1471-4159.2001.00304.x, PMID 11359871.

Politis M, Niccolini F. Serotonin in parkinsons disease. Behav Brain Res. 2015 Jan 15;277:136-45. doi: 10.1016/j.bbr.2014.07.037, PMID 25086269.

Susan F, Rosalind C, Jonathan M. Serotonin and Parkinsons disease: on movement mood and madness. Mov Disord. 2009 Jul 15;24(9):1255-66.

Pandit M. Neuroprotective properties of some Indian medicinal plants. Int J Pharm Biol Arch. 2011 Oct 10;2(5):1374-9.

Published

01-01-2025

How to Cite

SARAWADE, R., and C. D. UPASANI. “EVALUATION OF SINIGRIN EFFECT IN NEUROPROTECTION AGAINST PARKINSON’S DISEASE AND NEUROPATHIC PAIN”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 1, Jan. 2025, pp. 21-27, doi:10.22159/ijpps.2025v17i1.52699.

Issue

Section

Original Article(s)