NON-STEROIDAL ANTI-INFLAMMATORY DRUGS FOR TOPICAL OPHTHALMIC ADMINISTRATION: CONTEMPORARY TRENDS

  • Petya Todorova Peneva Medical University of Plovdiv, Faculty of Pharmacy, Department of Pharmaceutical Sciences, 15-A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria

Abstract

Topically applied drugs for the treatment of ocular inflammation are the most commonly used formulations due to many reasons: they are simple to use; they can be applied often and provide a high drug concentration; systemic side effects which are associated with oral administration can be avoided. But due to the physiological limitations of the eyes only a small number of anti-inflammatory agents, which have certain physico-chemical properties can be included in appropriate and efficient formulations for treatment of ocular inflammation. To prepare the optimal therapeutic and technological ophthalmic formulation, it is required to know the possibility of enhancing the bioavailability in the ocular tissues and to increase the therapeutic activity of the active substance, by using appropriate technological approaches to create a stable, tolerable and effective ophthalmic drug formulation. In this review, we focus on microemulsions, polymeric NPs, liposomes, SLNs, and nanosuspensions as formulations incorporating non-steroidal anti-inflammatory drugs (NSAIDs) for topical ophthalmic application.

 

Keywords: NSAIDs, Nanoparticle-drug delivery systems, Topical ophthalmic administration

Downloads

Download data is not yet available.

Author Biography

Petya Todorova Peneva, Medical University of Plovdiv, Faculty of Pharmacy, Department of Pharmaceutical Sciences, 15-A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
assist. prof. at the Department of Pharmaceutical Sciences, Faculty of Pharmacy

References

1. Kumar A, Malviya R, Sharma PK. Recent trends in ocular drug delivery: a short review. Eur J Appl Sci 2011;3:86-92.
2. Harry J, Mission G. Clinical ophthalmic pathology, Principles of Diseases of the Eye and Associated Structures. Oxford (UK): Butterworth Heinemann; 2001.
3. Foster JB, Lee WB. The tear film: anatomy, Structure and Function. In: Holland J, Mannis MJ, Lee WB. editors. Ocular Surface Disease: Cornea, Conjunctiva and Tear Film. saunders; 2013.
4. Tomlinson A, Khanal S. Assessment of tear film dynamics: quantification approach. Ocul Surf 2005;3:81-95.
5. Kulkarni VS. Handbook of Non-Invasive Drug Delivery Systems. Elsevier; 2010.
6. AHFS. Drug information American Society of Health–System Pharmacists; 2001.
7. Mainardes RM, Urban MCC, Cinto PO, Khalil NM, Chaud MV, Evangelista RC, et al. Colloidal carriers for ophthalmic. Drug Delivery Curr Drug Targets 2005;6:363-71.
8. Alonso MJ. Nanomedecine for overcoming biological barriers. Biomed Pharmacother 2004;58:168-72.
9. Patel PB, Shastri DH, Shelat PK, Shukla AK. Ophthalmic drug delivery systems: challenges and approaches. Syst Rev Pharm 2010;1:113-20.
10. Kreuter J. Nanoparticles-a historical perspective. Int J Pharm 2007;331:1–10.
11. Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Delivery 2007;4:371–88.
12. Das S, Suresh PK. Drug Delivery to Eye: Special Reference to Nanoparticles. Int J Drug Delivery 2010;2:12-21.
13. Canavan N. New Insights into Ophthalmic Drug Delivery. PFQ; 2011.
14. Schoenberger SD, Kim SJ. Nonsteroidal anti-inflammatory drugs for retinal disease. Int J Inflammation 2013. doi: 10.1155/2013/281981. [Article in Press]
15. Avunduk AM, Avunduk MC, Vornell ED, Kaufman HE. The comparison of efficacies of topical corticosteroids and nonsteroidal anti-inflammatory drops on dry eye patients: a clinical and immunocytochemical study. Am J Ophthalmol 2003;136:593-602.
16. Pfluqfelder SC. Anti-inflammatory therapy for dry eye. Am J Ophthalmol 2004;137:337-42.
17. Udoetuk JD, Dai Y, Ying GS, Gangaputra S, Rosenbaum JT, Suhler EB, et al. Risk of corticosteroidal-induced hyperglycemia requiring medical therapy among patients with inflammatory eye diseases. Ophthalmology 2012;119:1569-74.
18. Schalnus R. Topical nonsteroidal anti-inflammatory therapy in ophthalmology. Ophthalmologica 2003;217:89–98.
19. Bandare BM, Sankaridurg PR, Willcox MD. Non-steroidal anti-inflammatory agents decrease bacterial colonization of contact lenses and prevent adhesion to human corneal epithelial cells. Curr Eye Res 2004;29:245–51.
20. Rathore MS, Majumdar DK. Effect of formulation factors on in vitro transcorneal permeation of gatifloxacin from aqueous drops. AAPS Pharm Sci Tech 2006;7:57.
21. Ahuja M, Dhake AS, Sharma SK, Majumdar DK. Topical ocular delivery of NSAIDs. AAPS J 2008:10:229-41.
22. Sweetman CS. Martindale: The Complete Drug Reference. 34th ed. London: Pharmaceutical Press; 2005.
23. Deruiter J. Non-steroidal antiinflammatory drugs (nsaids), Principles of drug action 2: Tulane University Fall; 2002.
24. Sánchez-Borges M. Clinical management of nonsteroidal anti-inflammatory drug hypersensitivity. WAO J 2008;1:29-33.
25. Das S, Banerjee R, Bellare J. Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomaterials Artificial Organs 2005;18:203-12.
26. Agnihotri SM, Vavia PR. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomed Nanotechnol Biol Med 2009;5:90-5.
27. Ahuja M, Dhake AS, Majumdar DK. Effect of formulation factors on in vitro permeation of diclofenac from experimental and marketed aqueous eye drops through excised goat cornea. Yakugaku Zasshi 2006;126:1369–75.
28. Attama AA, Reichl S, Muller-Goymann CC. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 2008;355:307–13.
29. Sahu V, Solanki H, Pandey AK. Development and characterization of solid lipid nanoparticle of diclofenac sodium in the treatment of ocular pain after photorefractive keratectomy. Int J Nanomater Nanotechnol Nanomed 2015;179:80.
30. Swamy NGN, Abbas Z, Santosh Kumar IH. Eudragit RS 100 nanosuspensions for the controlled ophthalmic delivery of diclofenac sodium. Thai J Pharm Sci 2013;37:157-70.
31. Amkanth S, Madhusudhana Chetty C, Alagusundaram M, Angalaparameswari S, Thiruvengadarajan VS, Gnanaprakash K. Design and evaluation of diclofenac sodium ocusert. Int J Pharm Tech Res 2009;1:1219-23.
32. Ara T, Sharma S, Bhat SA, Bhandari A, Deva AS, Rathore MS, et al. Preparation and evaluation of ocular inserts of diclofenac sodium for controlled drug delivery. Pharm Lett 2014;6:93-9.
33. Khowessah O, Amin M, Basalious EB. Development and optimization of aceclofenac nanoparticles utilizing a full factorial design. Proceedings of the 5th International Conference on Nanotechnology: Fundamentals and Applications Prague, Czech Republic; 2014. p. 300.
34. Dasgupta S, Ghosh SK, Ray S, Mazumder B. Solid lipid nanoparticles (SLNs) gels for topical delivery of aceclofenac in vitro and in vivo evaluation. Curr Drug Delivery 2013;10:656-66.
35. Katara R, Majumdar DK. Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery. Colloids Surf B 2013;103:455-62.
36. Boddeda B, Ratna JV. Mucoadhesive nanoparticles for sustained ocular delivery of bromfenac: in vitro and pharmacokinetic studies. J Bioequivalence Bioavailability 2014;6:5.
37. Vengurlekar P, Singh A, Rathod S. Microspheric in-situ gel for ocular drug delivery system of bromefanac sodium. IJPSR 2014;5:179-85.
38. Souto EB, Doktorovova S, Gonzalez-Mira E, Egea MA, Garcia ML. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr Eye Res 2010;35:537–52.
39. Walters T, Raizman M, Ernest P. In vivo pharmacokinetics and in vitro pharmacodynamics of nepafenac, Amfenac, Ketorolac, and Bromfenac. J Cataract Refractive Surg 2007;33:1539–45.
40. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluationof several colloidal systems, nanoparticles, nanocapsules and nanoemulsionsas ocular drug carriers. J Pharm Sci 1996;85:530–6.
41. De Campos AM, Sanchez A, Gref R, Calvo P, Alonso MJ. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 2003;20:73–81.
42. Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H, El Dally M. Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 2008;31:1040–9.
43. Chetoni P, Panichi L, Burgalassi S, Bendli U, Seattone MF. Pharmacokinetics and anti-inflammatory activity in rabbits of a novel indomethacin ophthalmic solution. J Ocul Pharmacol Ther 2000;16:363–72.
44. Andonova V, Georgiev G, Toncheva V, Kassarova M. Preparation and study of poly (vinyl Acetate) and Poly (styrene) nanosized latex with indometacin. Pharmazie 2012;67:601-4.
45. Andonova V, Georgiev G, Toncheva V, Petrova N, Karashanova D, Penkov D, et al. Indomethacin loading and in vitro release properties from vinyl acetate homo-and co-polymer nanoparticles, coated with polyzwitterion and carbopol® shells. Int J Pharm Pharm Sci 2014;6:691-9.
46. Andonova V, Georgiev G, Toncheva V, Karashanova D, Katsarov P, Kassarova M. Carbopol® and chitosan coated nanoparticles with in-situ loaded indomethacin. Am J Pharm Tech Res 2014;4:664-78.
47. Andonova V, Georgiev G, Toncheva V, Kassarova M. Influence of some technological factors on the preparation of polymeric nanoparticles with indomethacin. Open Access Sci Rep 2013; 2. doi:10.4172/scientificreports.703:1-4. [Article in Press]
48. Andonova V, Draganov M, Feodorova Y, Georgiev G, Kassarova M. Biological activity of indomethacin-loaded nanoparticles. World J Pharm Res 2014;4:85-101.
49. Andonova V, Georgiev G, Dimitrova S, Katsarova M, Kassarova M. Characterization, In vitro evaluation and stability studies of indomethacin-loaded polyzwitterionic copolymer nanoparticles. Int J Drug Delivery Technol 2015;5:16-23.
50. Andonova VY, Georgiev GS, Georgieva VT, Petrova NL, Kassarova M. Indomethacin nanoparticles for applications in liquid ocular formulations. Folia Med 2013;55:76-82.
51. Andonova V, Zagorchev P, Katsarov P, Kassarova M. Eye drops with nanoparticles as drug delivery systems. Int J Pharm Pharm Sci 2015;7:431-5.
52. Aşık MD, Uğurlu N, Yülek F, Tuncer S, Türk M, Denkbaş EB. Ketorolac tromethamine loaded chitosan nanoparticles as a nanotherapeutic system for ocular diseases. Hacettepe J Biol Chem 2013;41:81-6.
53. Gupta AK, Madan S, Majumdar DK, Maitra A. Ketorolac entrapped in polymeric micelles: preparation, Characterisation and ocular anti-inflammatory studies. Int J Pharm 2000;209:1-14.
54. Vega E, Gamisans F, García ML, Chauvet A, Lacoulonche F, Rgea MA. PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci 2008;97:5306-17.
55. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 2002;23:3247–55.
56. Gonzales-Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B 2010;81:412-21.
57. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 2002;16:53-61.
58. Li X, Nie SF, Kong J, Li N, Ju CY, Pan W. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm 2008;363:177-82.
59. Adibkia K, Javadzadeh Y, Dastmalchi S, Mohammadi G, Niri FK, Alaei-Beirami M. Naproxen-eudragit RS100 nanoparticles: preparation and physicochemical characterization. Colloids Surf B 2011;83:155-9.
60. Javadzadeh Y, Ahadi F, Davaran S, Mohammadi G, Sabzevari A, Adibkia K. Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf B 2010;81:498-502.
61. Adibkia K, SiahiShadbad MR, Nokhodchi A, Javadzedeh A, Barzegar-Jalali M, Barar J, et al. Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. J Drug Targeting 2007;15:407–16.
62. Giunchedi P, Conte U, Chetoni P, Saetone MF. Pectin microspheres as ophthalmic carriers for piroxicam: evaluation in vitro and in vivo albino rabbits. Eur J Pharm Sci 1999;9:1-7.
63. Ibrahim MM. Formulation and evaluation of certain drugs for ophthalmic therapy. PhD Thesis. Mansoura University; 2014.
64. Ibrahim MM, Abd-Elgawad A-EH, Soliman OA-E, Jablonski MM. Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release. J Pharm Sci 2013;102:1036-53.
65. Kararli TT, Bandyopadhyay R, Singh SK, Hawley LC. Ophthalmic Formulation of a Selective Cyclooxygenase-2 Inhibitory Drug. WO02005815; 2002.
Statistics
533 Views | 1115 Downloads
How to Cite
Peneva, P. T. “NON-STEROIDAL ANTI-INFLAMMATORY DRUGS FOR TOPICAL OPHTHALMIC ADMINISTRATION: CONTEMPORARY TRENDS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 7, no. 9, July 2015, pp. 13-19, https://innovareacademics.in/journals/index.php/ijpps/article/view/6617.
Section
Review Article(s)