MICROENCAPSULATION OF ELLAGIC ACID FROM POMEGRANATE HUSK AND KARAYA GUM BY SPRAY DRYING

Authors

  • Gabriel A. LujÁn-medina Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico
  • Janeth Ventura Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico
  • Juan A. Ascacio-valdÉs Animal Nutrition Department, Animal Sciences Division. Agrarian Autonomous University Antonio Narro”. Saltillo 25315, Coahuila, Mexico
  • Miguel A. Cerqueira CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710057 Braga Portugal
  • Daniel Boone Villa Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico
  • Juan C. Contreras-esquivel Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico
  • Miguel A. Aguilar GonzÁlez Laboratory of Characterization of Micro and Nanostructured Materials, Metallurgy and Ceramics. Centre for Research and Advanced Studies (CINVESTAV). National Polytechnic Institute. Ramos Arizpe 25903, Coahuila, Mexico
  • AntÓniovicente . CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710057 Braga Portugal
  • CristÓbal N. Aguilar Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico

Keywords:

Pomegranate husk, Ellagic acid, Karaya gum, Spray drier, Microcapsules

Abstract

Objective: The aim of this study was to obtain and characterize microcapsules with Ellagic Acid (EA) from pomegranate as core material and Karaya Gum (KG) as wall material.

Methods: EA was obtained from dry pomegranate peel powder via methanolysis and quantified by HPLC. Microcapsules were obtained preparing a dispersion containing KG and EA in phosphate buffer pH 8. The dispersion was processed in a spray dryer under specific conditions (inlet temperature at 150 °C, feed flow at 30% and aspirator at 100 %) for obtaining of microcapsules. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used for characterization.

Results: Obtained material contains 98.03±2.82 mg EA/g of pomegranate peel. FTIR showed that there were changes in the molecular structure of microcapsules referred to raw materials. SEM confirmed that particles obtained had micron-size (1-5 µm). DSC analysis showed that raw materials had glass transition temperatures of 79.58 and 83.41 °C and for microcapsules the value was67.25 °C.

Conclusion: Methanolysis is a viable technique for the obtaining of EA from the peel of pomegranate. KG shows good potential for be used as wall material for EA microencapsulation.

 

Downloads

Download data is not yet available.

Author Biographies

Gabriel A. LujÁn-medina, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico

Food Research Department

Janeth Ventura, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico

Food Research Department, Researcher

Juan A. Ascacio-valdÉs, Animal Nutrition Department, Animal Sciences Division. Agrarian Autonomous University Antonio Narro”. Saltillo 25315, Coahuila, Mexico

Animal Nutrition Department, Pos-doctoral Researcher

Miguel A. Cerqueira, CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710057 Braga Portugal

Centre of Biological Engineering, Pos-doctoral Researcher

Daniel Boone Villa, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico

School of Health Sciences. Departament of Food Research, Invited Proffessor

Juan C. Contreras-esquivel, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico

Food Research Department, Researcher

Miguel A. Aguilar GonzÁlez, Laboratory of Characterization of Micro and Nanostructured Materials, Metallurgy and Ceramics. Centre for Research and Advanced Studies (CINVESTAV). National Polytechnic Institute. Ramos Arizpe 25903, Coahuila, Mexico

Laboratory of Characterization of micro and nanostructurated materials, metallurgy and ceramics, Head Researcher

AntÓniovicente ., CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710057 Braga Portugal

Centre of Biological Engineering, Associated Proffessor

CristÓbal N. Aguilar, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo 25280, Coahuila, Mexico

Food Research Department, Researcher

References

Khanbabaee K, Ree Tv. Tannins: classification and definition. R Soc Chem 2001;18:641-9.

Ascacio-Valdés JA, Buenrostro-Figueroa JJ, Aguilera-Carbo A, Prado-Barragán A, Rodríguez-Herrera R, Aguilar CN. Ellagitannins: biosynthesis, biodegradation and biological properties. J Med Plants Res 2011;5:4696-703.

Robledo A, Aguilera-Carbó A, Rodríguez R, Martinez JL, Garza Y, Aguilar CN. Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J Ind Microbiol Biotechnol 2008;35:507-13.

Landete JM. Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 2011;44:1150-60.

Lei Z, Jervis J, Helm RF. Use of methanolysis for the determination of total ellagic and gallic acid contents of wood and food products. J Agric Food Chem 2001;49:1165-8.

Wilson TC, Hagerman AE. Quantitative determination of ellagic acid. J Agric Food Chem 1990;38:1678-83.

Aguilera-Carbo AF, Augur C, Aguilar CN, Prado-Barragan LA, Favela-Torres E. Extraction and analysis of ellagic acid from novel complex sources. Chem Papers 2008;62:440-4.

Ascacio-Valdés JA, Buenrostro JJ, Cruz RDl, Sepulveda L, Aguilera AF, Prado A, et al. Fungal biodegradation of pomegranate ellagitannins. J Basic Microbiol 2014;54:28-34.

Larrosa M, García-Conesa MT, Espín JC, Barberán FAT. Ellagitannins, Ellagic acid and vascular health. Phytochemicals and Cardiovascular Disease 2010;31:513-39.

Clifford MN, Scalbert A. Review. Ellagitannis-nature, occurrence and dietary burden. J Sci Food Agric 2000;80:1118-25.

García-Viguera C, Vicente AP. La granada. Alimento rico en polifenoles antioxidantes y bajo en calorías. Alimentación Nutrición y Salud 2004;11:113-20.

Häkkinen SH, Kärenlampi SO, Mykkänen HM, HeinonenI M, Törrönen AR. Ellagic acid content in berries: influence of domestic processing and storage. Eur Food Res Technol 2000;212:75-80.

Seeram N, Lee R, Hardy M, Heber D. Rapid large-scale purification of ellagitannins from pomegranate husk, a by-product of the commercial juice industry. Sep Purif Technol 2005;41:49-55.

Madrigal-Carballo S, Rodríguez G, Krueger CG, Dreher M, Reed JD. Pomegranate (Punica granatum) supplements: authenticity, antioxidant, and polyphenol composition. J Funct Foods 2009;1:324-9.

Çam M, Hısıl Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem 2010;123:878-85.

Ascacio-Valdés JA. Estudio de la hidrólisis microbiana de los elagitaninos. Saltillo: Universidad Autónoma de Coahuila; 2012.

Aguilar CN, Aguilera-Carbó A, Robledo A, Ventura J, Belmares R, Martinez D, et al. Production of antioxidant nutraceuticals by solid-state cultures of pomegranate (Punica granatum) peel and creosote bush (Larrea tridentata) Leaves. Food Technol Biotechnol 2008;46:218-22.

Cruz-Quiroz Rdl, Herrera RR, Esquivel JCC, Aguilar CN, Aguilera-Carbó A, Barragán LAP. La granda: fuente de potentes agentes bioactivos Ciencia Cierta; 2011. p. 35-8.

Atta-Ur-Rahman, Ngounou FN, Choudhary MI, Malik S, Makhmoor T, Nur-E-Alam, et al. New antioxidant and antimicrobial ellagic acid derivatives from Pteleopsis hylodendron. Planta Med 2001;67:335-9.

Vattem DA, Shetty K. Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system. Process Biochem Int 2003;39:367-79.

Hamad A-WR, Al-Momani WM, Janakat S, Oran SA. Bioavailability of ellagic acid after single dose administration using HPLC. Pak J Nutr 2009;8:1661-4.

Sepúlveda L, Ascacio A, Rodríguez-Herrera R, Aguilera-Carbó A, Aguilar CN. Ellagic acid: biological properties and biotechnological development for production processes. Afr J Biotechnol 2011;10:4518-23.

Fang Z, Bhandari B. Encapsulation of polyphenols-review. Food Sci Technol 2010;21:510-23.

Murugesan R, Osrat V. Spray dying for the production of nutraceutical ingredients-a review. Food Bioprocess Technol 2011;5:3-14.

Champagne CP, Fustier P. Microencapsulation for the improved delivery of bioactive compounds into foods. Sci Direct 2007;18:184-90.

Chang TMS. Semipermeable microcapsules. Sci Direct 1964;146:524-5.

Desai KGH, Park HJ. Recent developments in microencapsulation of food ingredients. Drying Technol 2005;23:1361-94.

Rocha GA, Fávaro-Trindade CS, Grosso CRF. Microencapsulation of lycopene by spray drying: characterization, stability, and application of microcapsules. Food Bioprod Process 2012;90:37-42.

Bakowska-Barczac AM, Kolodziejczyk PP. Blackcurrant polyphenols: their storage stability and microencapsulation. Ind Crops Prod 2011;34:1301-9.

Haidong L, Fang Y, Zhihong T, Huanwei S, Tiehui Z. Use combinations of gum arabic, maltodextrin and soybean protein to microencapsulate ginkgo leaf extracts and its inhibitory effect on skeletal muscle injury. Carbohydr Polym 2012;88:435-40.

Shcherbina Y, Roth Z, Nussinovithch A. Physical properties of gum karaya-starch-essential oil patches. AAPS PharmSciTech 2010;11:1276-86.

Lujan-Medina GA, Ventura J, Lara-Ceniceros AC, Ascacio-Valdés JA, Boone-Villa D, Aguilar CN. Gum karaya: general topics and applications. Macromol: Indian J 2013;9:1-7.

Vinod VTP, Sashidhar RB, Sivaprasad N, Sarma VUM, Satyanarayana N, Kumaresan R, et al. Bioremediation of mercury (II) from aqueous solution by gum karaya (sterculia urens): a natural hydrocolloid. Desalination 2011;272:270-7.

Singh AV. A DSC study of some biomaterials relevant to pharmaceutical industry. J Therm Anal Calorim 2013;112:791-3.

Ascacio-Valdés JA, Aguilera-Carbó A, Rodríguez-Herrera R, Aguilar-González C. Análisis de ácido elágico en algunas plantas del semidesierto. Mexicano Revista Mexicana; 2013. p. 36-40.

Poupard P, Sanoner P, Baron A, Renard CMGC, Guyot S. Characterization of procyanidin B2 oxidation products in an apple juice model solution and confirmation of their presence in apple juice by high-performance liquid chromatography coupled to electrospray ion trap mass spectrometry. J Mass Spectrom 2011;46:1186-97.

Medina-Torres L, García-Cruz EE, Calderas F, Laredo RFG, Olivares GS, Gallegos-Infante JA, et al. Microencapsulation by spray drying of gallic acid white nopal mucilage (Opuntia ficus indica). LWT-Food Sci Technol 2013;50:642-50.

Bhandari BR, Howes T. Implication of glass transition for the drying and stability of dried food. J Food Eng 1999;40:71-9.

Bhandari BR, Datta N, Howes T. Problems associated with spray drying of sugar-rich foods. Drying Technol 1997;15:671-84.

Chiou D, Langrish TAG. Development and characterisation od novel nutraceuticals with spray drying technology. J Food Eng 2007;82:84-91.

Li B, Harich K, Wegiel L, Taylor LS, Edgar KJ. Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions. Carbohydr Polym 2013;92:1443-50.

Fang Z, Bhandari B. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res Int 2012;48:478-83.

Roos Y, Karel M. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J Food Sci 1991;56:1676-81.

Ascacio-Valdés J, Burboa E, Aguilera-Carbo AF, Aparicio M, Pérez-Schmidt R, Rodríguez R, et al. An antifungal ellagitannin insolated from Euphorbia antisyphilitica Zucc. Asian Pac J Trop Biomed 2013;3:41-6.

Zhang J, Du Z, Xu S, Zhang S. Synthesis and characterization of Karaya Gum/Chitosan Composite Microspheres. Iranian Polymer J 2009;18:307-13.

Krishnaiah D, Sarbatly R, Nithyanandam R. Microencapsulation of morinda citrifolia L. extract by spray drying. Chem Eng Res Des 2012;90:622-32.

Ré MI. Microencapsulation by spray drying. Drying Technol: Int J 1998;16:1195-236.

Tonon RV, Grosso CRF, Hubinger MD. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res Int 2011;44:282-9.

Soottitantawat A, Bigeard F, Yoshii H, Furuta T, Ohkawara M, Linko P. Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Sci Emerging Technol 2005;6:107-14.

Loksuwan J. Characteristics of microencapsulated β-caroteno formed by spray drying with modified tapioca starch, native tapioca starch, and maltodextrin. Food Hydrocolloids 2007;21:928-35.

Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 2007;40:1107-21.

Zheng L, Ding Z, Zhang M, Sun J. Microencapsulation of bayberry polyphenols by ethyl cellulose: preparation and characterization. J Food Eng 2011;104:89-95.

Hussein M, Al Ali S, Zainal Z, Hakim MN. Microencapsulation of bayberry polyphenols by ethyl cellulose: preparation and characterization. Int J Nanomed 2011;6:1373-83.

Published

06-10-2015

How to Cite

LujÁn-medina, G. A., J. Ventura, J. A. Ascacio-valdÉs, M. A. Cerqueira, D. B. Villa, J. C. Contreras-esquivel, M. A. Aguilar GonzÁlez, A. ., and C. N. Aguilar. “MICROENCAPSULATION OF ELLAGIC ACID FROM POMEGRANATE HUSK AND KARAYA GUM BY SPRAY DRYING”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 13, Oct. 2015, pp. 212-6, https://innovareacademics.in/journals/index.php/ijpps/article/view/7053.