• Sudhakara G. Sri Krishnadevaraya University
  • Ramesh B. Sri Krishnadevaraya University
  • Mallaiah P. Sri Krishnadevaraya University
  • Manjunatha B. Sri Krishnadevaraya University
  • Desireddy Saralakumari Department of Zoology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India


Objective: The present study was undertaken to investigate the hypolipidemic activity of ethanolic extract of Commiphora mukul gum resin (EtCMGR) on the brain of streptozotocin (STZ) induced diabetic Wistar rats.

Methods: Thirty two rats, included for the study, were divided into four groups: control (C), control treated with EtCMGR (C+CM), diabetic (D) and diabetic treated with EtCMGR (D+CM). Diabetes was induced by single intraperitonial injection of STZ (55 mg/kg b.w.).

Results: Diabetic rats showed significant reduction in the levels of total lipids, phospholipids, cholesterol, glycolipids and protein level and significant decrease in the activity of acetylcholinesterase while the levels of triglycerides, acetylcholine and the activities of glutamate pyruvate transaminases (GPT) and glutamate oxaloacetate transaminases (GOT) increased significantly when compared to control group. Oral administration of EtCMGR (suspended in 5% Tween-80 in distilled water prior to use) daily at a concentration of 200 mg/kg b.w. to group-D+CM rats for 60 days reversed the above changes significantly.

Conclusion: These results suggest that EtCMGR exhibits hypolipidemic effect in the STZ-induced diabetic rats.


Keywords: Acetylcholinesterase, Commiphora mukul, Hypolipidemic activity, Streptozotocin


Download data is not yet available.


1. Rerup CC. Drugs producing diabetes through the damage of the insulin producing cells. Pharmacol Rev 1970;22:485-518.
2. Berhanu P, Olefsky JM. Insulin and its action: Its receptors and diabetes (Hollenberg MD. Editor. Marcel Dekker, Newyork; 1985. p. 265-309.
3. Taylor R, Agius L. The biochemistry of diabetes. Biochem J 1988;250:625-40.
4. Kannel WB, Mc Gee DL. Diabetes and cardiovascular disease. The Framingham study. J Am Med Assoc 1979;241:2035-8.
5. Paton RC, Passa P. Platelets and diabetic vascular diseases. Diabetes Metab 1983;9:306-12.
6. Leelavinothan Pari, Pidaran Murugan. Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats. J Med Food 2007;10:323-9.
7. Kumar JS, Menon VP. Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism 1993;42:1435–9.
8. Kamboj SS, Chopra K, Sandhir R. Hyperglycemia-induced alterations in synaptosomal membrane fluidity and activity of membrane bound enzymes: beneficial effect of N-acetylcysteine supplementation. Neuroscience 2009;162:349–58.
9. Baquer NZ, Kumar P, Taha A, Cowsik SM, Kale RK, McLean P. Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. J Biosci 2011;36:383–96.
10. Baynes JW. Reactive oxygen in the aetiology and complications of diabetes. In: Ioannides C, Flatt PR. editors. Drug, Diet and Disease, Mechanistic Approach to Diabetes. Ellis Horwood Limited, Hertfordshive; 1995. p. 230-1.
11. Jepson MM, Bates PC, Millward DJ. The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat. Br J Nutr 1988;59:397-415.
12. West KM. Prevention and therapy of diabetes mellitus. In: present knowledge in nutrition. Hegsted DM. editors. The nutrition foundation Inc. Washington, DC. 1976. p. 356-65.
13. Suckling Keith E, Brian Jackson. Animal models of human lipid metabolism. Prog Lipid Res 1993;32:124.
14. Bierman EL. Atherogenesis in diabetes. Arterioscler Thromb 1992;12:647-56.
15. Mosmann B, Behl C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin Invest Drugs 2002;11:1407-35.
16. Agustin AJ, Breipohl W, Boker T, Lutz J, Spitzbas M. Increased lipid peroxide levels and myeloperoxidase activity in the vitreous of patients suffering from proliferative diabetic retinopathy. Graefe's Arch Clin Exp Ophthalmol 1993;231:647-50.
17. Montilla P, Vargas J, Tunez I, Munoz MC, Valdelvira ME, Cabrera E. Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res 1998;25:94-100.
18. ADA. Clinical practice recommendations. Screening for diabetes. Diabetes Care 1997;20:22-4.
19. Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomed 1995;2:137–89.
20. Aguilara-Alarcon FJ, Roman-Ramos R, Perez-Gutierrez S. Study of the antihyperglycemic effect of plants used as antidiabetics. J Ethanopharmacol 1998;61:101-10.
21. Pari L, Uma Maheswari J. Antihyperglycemic activity of Musa sapientum flowers: Effect on lipid peroxidation in alloxan diabetic rats. J Ethnopharmacol 2000;14:136-8.
22. Ugochukwu NH, Babady NE, Cobourne M, Gasset SR. The effect of Gangronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats. J Biosci 2003;28:1-5.
23. Sathyavati GV. Effect of an indigenous drug on disorders of lipid metabolism with special references to atherosclerosis and obesity (medoroga) MD. thesis (Doctor of Ayurvedic Medicine), Banaras Hindu University, Varanasi; 1966.
24. Nityanand S, Kapoor NK. Cholesterol lowering activity of the various fractions of the guggul. Indian J Exp Biol 1973;11:395–6.
25. Szekanecz Z, Koch AE, Kunkel SL, Strieter RM. Cytokines in rheumatoid arthritis. Potential targets for pharmacological intervention. Drugs Aging 1998;12:377–90
26. Urizar NL, Moore DD. Gugulipid: a natural cholesterol-lowering agent. Annu Rev Nutr 2003;23:303–13.
27. Wang X, Greiberger J, Ledinski G, Kager G, Paigen B, Jurgens G. The hypolipidemic natural product Commiphora mukul and its component guggulsterone inhibit oxidative modification of LDL. Atherosclerosis 2004;172:239-46.
28. Wu J, Xia C, Meier J, Li S, Hu X, Lala DS. The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol Endocrinol 2002;16:1590-7.
29. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 2002;296:1703-6.
30. Ramesh B, Rasineni K, Singareddy SR, Kasetti R, Pasurla R, Chippada A, et al. Antihyperglycemic and antioxidant activities of alcoholic extract of Commiphora mukul gum resin in streptozotocin-induced diabetic rats. Pathophysiology 2011;18:255–61.
31. Ramesh B, Saralakumari D. Antihyperglycemic, hypolipidemic and anti-oxidant activities of ethanolic extract of Commiphora mukul gum resin in fructose-fed male Wistar rats. J Physiol Biochem 2012;68:573-82.
32. Lata S, Saxena KK, Bhasin V, Saxena RS, kumar A, Srivastav VK. Beneficial effects of Allium sativam, Allium cepa and Commiphora mukul on experimental hypolipidemia and atherosclerosis, a comparative evaluation. J Postgrad Med 1991;37:132-5.
33. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226:497-509.
34. Foosati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 1982;28:2077-80.
35. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20:470-5.
36. Connerty V, Briggs AR, Eaton EH. Simplified determination the lipid components of blood serum. Clin Chim Acta 1961;7:37-53.
37. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem 1952;66:375-400.
38. Roughan PG, Batt RD. Quantitative analysis of sul-folipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in planttissues. Anal Biochem 1968;22:74–88.
39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin-Phenol reagent. J Biol Chem 1951;193:265-8.
40. Metcalf RL. Methods in biochemical analysis. Glick D. editor. Interscience Publishers, New York ; 1951. p. 5.
41. Augustinson KB. Methods in Biochemical analysis. Glick D. editor. Interscience Publishers. New York; 1957. p. 5.
42. Ellman GL, Courtney KD, Andres V Jr. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
43. Reitman S, Frankel S. Practical biochemistry in clinical medicine. Am J Clin Pathol 1957;25:56.
44. Duncan DB. Multiple range and multiple tests. Biometrics 1955;42:1-42.
45. Gispen WH, Biessels GJ. “Cognition and synaptic plasticity in diabetes mellitus.” Trends Neurosci 2000;23:542-9.
46. Hong JH, Kim Park MR, Kwag OG, Lee KB, Rhee SJ. Effects of vitamin e on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetics rats. Clin Chim Acta 2004;340:107-15.
47. Thomson M, Al Amin ZM, Al-Qattan KK, Shaban LH, Ali Muslim. Anti-diabetic and Hypolipidaemic properties of garlic (Allium Sativum) in Streptozotocin-induced diabetic rats. Int J Diabetes Metab 2007;15:108-15.
48. Sudhakara G, Ramesh B, Mallaiah P, Sreenivasulu N, Saralakumari D. Protective effect of ethanolic extract of Commiphora mukul gum resin against oxidative stress in the brain of streptozotocin-induced diabetic Wistar male rats. EXCLI J 2012;11:576-92.
49. Bourre JM, Francois M, You A, Dumont O, Piciotti M, Pascal G, et al. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 1989;119:1880-92.
50. Yamamoto N, Hashimoto A, Takemoto Y, Okuyama H, Nomura M, Kitajima R, et al. Effect of the dietary alpha-linolenate/linoleate balance on lipid compositions and learning ability of rats. Discrimination process, extinction process, and glycolipid compositions. J Lipid Res 1988;29:1021-31.
51. Nakashima Y, Yuasa S, Hukamisu Y, Okuyama H, Ohhara T, Kameyama T, et al. Effect of high linoleate and a high alpha-linolenate diet on general behaviour and drug sensitivity in mice. J Lipid Res 1993;34:239-47.
52. Suzuki R, Lee K, Jing E, Biddinger SB, McDonald JG, Montine TJ, et al. Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metab 2010;12:567-79.
53. Malaisse WJ, Portois L, Zhang Y, Oguzhan G, Louchami K, Jijakli H, et al. Fatty acid content and pattern of epididymal and parametrial adipose tissue lipids in streptozotocin (Type 1) and Goto-Kakizaki (Type 2) diabetic rats. Int J Mol Med 2006;18:1231-4.
54. Othman A, Sagair AL. Effect of morphine sulphate on total lipids and triglycerides contents in serum and brain regions of rat. Med J Islamic World Acad Sci 2005;15:117-25.
55. Dalvi SS, Nayak VK, Pohujani SM, Desai NK, Kshirsagar NA, Gupta KC. Effect of gugulipid on bioavailability of diltiazem and propranolol. J Assoc Physicians India 1994;42:454-5.
56. Srinivasan MR, Srinivasan K. Hypocholesterolemic efficacy of garlic-smelling flower Adenocalymma alliaceum Miers in experimental rats. Indian J Exp Biol 1995;33:64-6.
57. Sharma RD, Raghuram TC. Hypoglycemic effect of fenugreek seeds in Non-insulin-dependent diabetic subjects. Nutr Res 1990;10:731–9.
58. Weihua X, Judith AS, Arnaud C, Philip JW, Angie R, Rodney DM, et al. Postnatal developmental delay and supersensitivity to organ psophata in gene-targeted mice lacking acetylcholineestrase. Pharmacology 2000;293:896-902.
59. EL-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta-carotene. Food Chem Toxicol 2004;42:1563-71.
60. Gill TS, Tewari H, Pande J. In vivo and in vitro effects of cadmium on selected enzymes in different organs of the fish barbus conchonius. Comp Biochem Physiol 1991;100:501-5.
61. Leong SF, Leung TK. Diabetes induced by streptozotocin causes reduced Na-K ATPase in the brain. Neurochem Res 1991;16:1161–5.
62. Ueyama J, Wang D, Kondo T, Saito I, Takagi K, Takagi K, et al. Toxicity of diazinon and its metabolites increases in diabetic rats. Toxicol Lett 2007;170:229–37.
63. Ramkumar KM, Latha M, Ashok kumar N, Pari L, Ananthan R. Modulation of impaired cholinesterase activity in experimental diabetes: effect of Gymnema montanum leaf extract. J Basic Clin Physiol Pharmacol 2005;16:17–35.
64. Ashok kumar N, Pari L, Ramkumar KM. N-Benzoyl-D-Phenylalanine attenuates brain acetylcholineestrase in neonatal streptozotocin-diabetic rats. Basic Clin Pharmacol Toxicol 2006;99:246-50.
65. Dash NK, Gupta G, Baquer NZ. Effects of hyperglycemia on acetylcholinesterase and catecholamine levels in rat brain and heart. Biochem Int 1991;23:261-9.
66. Szutowicz A, Tomaszewicz M, Jankowska A, Kisielevski Y. Acetylcholine synthesis in nerves terminals of diabetic rats. NeuroReport 1994;5:2421-4.
67. Makar TK, Hungund BL, Cook GA, Kashfi K, Cooper AJ. Lipid metabolism and membrane composition are altered in the brains of type II diabetic mice. J Neurochem 1995;64:2159–68.
68. Gumieniczek A, Hopkala H, Wojtowich Z, Nikolajuk J. Changes in antioxidant status of heart muscle tissue in experimental diabetes in rabbits. Acta Biochim Pol 2002;49:529-35.
69. Cohen S. Phosphates. In: Lajtha A. editor. Handbook of Neurochemistry. NY: Plenum Press; 1970. p. 87-131.
70. Netopilova M, Haugvicova R, Kubova H, Drsata J, Mares P. Influence of convulsants on rat brain activities of alanine aminotransferase and aspartate aminotransferase. Neurochem Res 2001;26:1285-91.
71. Matthews CC, Zielke HR, Wollack JB, Fishman PS. Enzymatic degradation protects neurons from glutamate excitotoxicity. J Neurochem 2000;75:1045-52.
72. Mahy N, Prats A, Riveros A, Andres N, Bernal F. Basal ganglia calcification induced by excitotoxicity: an experimental model characterised by electron microscopy and X-ray microanalysis. Acta Neuropathol 1999;98:217-25.
73. Anupama V, Narmadha R, Gopalakrishnan VK, Devaki K. Enzymatic alteration in the vital organs of streptozotocin diabetic rats treated with aqueous extract of Erythrina variegata bark. Int J Pharm Pharm Sci 2012;4:134-47.
329 Views | 390 Downloads
How to Cite
G., S., R. B., M. P., M. B., and D. Saralakumari. “PROTECTIVE EFFECT OF COMMIPHORA MUKUL GUM RESIN ON BRAIN IN STREPTOZOTOCIN-INDUCED DIABETIC RATS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 7, no. 9, July 2015, pp. 406-11,
Original Article(s)