ANTICANCER POTENTIAL OF α-MANGOSTIN

Authors

  • Muchtaridi Muchtaridi Department of Pharmceutical Analysis and Medicinal Chemistry, Faculty of Pharcmacy Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Jatinangor 45363, Indonesia. http://orcid.org/0000-0002-6156-8025
  • Cindy Aprillianie Wijaya Department of Pharmceutical Analysis and Medicinal Chemistry, Faculty of Pharcmacy Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Jatinangor 45363, Indonesia.

DOI:

https://doi.org/10.22159/ajpcr.2017.v10i12.20812

Keywords:

Mangosteen, Xanthones, Nil, Anticancer

Abstract

Objective: Mangosteen (Garcinia mangostana Linn.) is a tropical fruit originated from South East region. Mangosteen exhibiting a variety of pharmacological activities and is often used for traditional medicine. There are numerous chemical compounds contained in the pericarp of the mangosteen fruit. One of them is xanthone derivative which in some studies shows antioxidant and anticancer activity by preventing free radical and damaging cells. One of the xanthone derivatives that have the strongest anticancer properties is α-mangostin.

Methods: Anticancer potential of α-mangostin was reviewed from available literature.

Results: The α-mangostin shows anti-proliferative and apoptotic activity by suppressing the formation of carcinogenic compounds in various cancer cells. This review will summarize the anticancer properties of α-mangostin that may be exploited for effective cancer prevention.

Conclusion: Development of α-mangostin as a chemopreventive compound can provide new opportunities for effective cancer drug discovery. α-mangostin is useful as a complementary or alternative medicine and a chemopreventive tool against cancer.

Downloads

Download data is not yet available.

References

National Cancer Institute. What is Cancer. Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer. [Last accessed on 2017 May 25].

Kullmann F, Hollerbach S, Dollinger MM, Harder J, Fuchs M, Messmann H, et al. Cetuximab plus gemcitabine/oxaliplatin (GEMOXCET) in first-line metastatic pancreatic cancer: A multicentre phase II study. Br J Cancer 2009;100(7):1032-6.

Sun J, Chu YF, Wu X, Liu RH. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 2002;50(25):7449-54.

Wahyuono S, Hakim L, Nurlaila L. Standardization and preclinical test of fruit extract of steamed (Piper cubeba L) as traditional antiaxial medicine. Final Report of Competitive Grant Research XIII 2006;8:1.

Cui J, Hu W, Cai Z, Liu Y, Li S, et al. New medicinal properties of mangostins: Analgesic activity and pharmacological characterization of active ingredients from the fruit hull of (Garcinia mangostana L.). Pharmacol. Biochem. Behav. 2010;95:166–172.

Iinuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, et al. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J Pharm Pharmacol 1996;48(8):861-5.

Ryu HW, Curtis-Long MJ, Jung S, Jin YM, Cho JK, Ryu YB, et al. Xanthones with neuraminidase inhibitory activity from the seedcases of Garcinia mangostana. Bioorg Med Chem 2010;18(17):6258-64.

Nilar, Harrison LJ. Xanthones from the heartwood of Garcinia mangostana. Phytochemistry 2002;60:541–548.

Peres V, Nagem TJ. Trioxygenated naturally occurring xanthones. Phytochemistry 1997;44:191-214.

Alkilany SA, Elin YS, Kurniati NF, Adnyana IK. Preventive effect on obesity of mangosteen (Garcinia mangostana L.) pericarp ethanolic extract by reduction of fatty acid synthase level in monosodium Glutamate and high-calorie diet-induced male Wistar rats. Asian J Pharm Clin Res 2016;9:4-1.

Sagar S. Role of natural toothbrushes in containing oral microbial flora-a review. Asian J Pharm Clin Res 2015;8:5-1.

Likhitwitayawuid K, Chanmahasathien W, Ruangrungsi N, Krungkrai J. Xanthones with antimalarial activity from Garcinia dulcis. Planta Med 1998;64(3):281-2.

Wätjen W, Weber N, Lou YJ, Wang ZQ, Chovolou Y, Kampkötter A, et al. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol 2007;45(1):119-24.

Yang J, Liu RH, Halim L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT Food Sci Technol 2009;42:1-8.

Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, et al. Xanthones from mangosteen extracts as natural chemopreventive agents: Potential anticancer drugs. Curr Mol Med 2011;11(8):666-77.

Peterson KD, Terrence ED. The Shaping School Culture Field Book. Vol. 2. San Francisco: Jossey-Bass; 2009. p. 10-4.

Mahabussakaram W. Chemical constituent of Garcinia mangostana. J Nat Prod 1987;50(3):474-8.

Yates P, Stout GH. The structure of mangostin1. J Am Chem Soc 1958;80:1691-700.

Lan Q, Kim M. Use of α-Mangostin as Mosquito Larvicide, Patent US 0300300:A1; 2008.

Nguyen PT, Marquis RE. Antimicrobial actions of a-mangostin against oral streptococci. Can J Microbiol 2011;57(3):217-25.

Moffet A, Shah P. Pharmaceutical and therapeutic composition derived from Garcinia mangostana L. Plant Patent US 2006;055688:A1.

Kaomongkolgit R, Jamdee K, Chaisomboon N. Antifungal activity of alpha-mangostin against Candida albicans. J Oral Sci 2009;51(3):401-6.

Matsumoto K, Akao Y, Ohguchi K, Ito T, Tanaka T, Iinuma M, et al. Xanthones induce cell-cycle arrest and apoptosis in human colon cancer DLD-1 cells. Bioorg Med Chem 2005;13(21):6064-9.

Suvarnakuta P, Chaweerungrat C, Devahastin S. Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chem 2011;1:240-7.

Arunrattiyakorn P, Suksamrarn S, Suwannasai N, Kanzaki H. Microbial metabolism of a-mangostin isolated from Garcinia mangostana L. Phytochemistry 2011;72(8):730-4.

Chen LG, Yang LL, Wang CC. Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol 2008;46(2):688-93.

Sato A, Fujiwara H, Oku H, Ishiguro K, Ohizumi Y. Alpha-mangostin induces Ca2 -ATPase-dependent apoptosis via mitochondrial pathway in PC12 cells. J Pharmacol Sci 2004;95(1):33-40.

Akao Y, Nakagawa Y, Iinuma M, Nozawa Y. Anti-cancer effects of xanthones from pericarps of mangosteen. Int J Mol Sci 2008;9(3):355-70.

Jung HA, Su BN, Keller WJ, Mehta RG, Kinghorn AD. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 2006;54(6):2077-82.

Vieira LM, Kijjoa A. Naturally-occurring xanthones: Recent developments. Curr Med Chem 2005;12(21):2413-46.

Peres V, Nagem TJ, de Oliveira FF. Tetraoxygenated naturally occurring xanthones. Phytochemistry 2000;55(7):683-710.

Jiang DJ, Dai Z, Li YJ. Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc Drug Rev 2004;22(2):91-102.

Ee GC, Daud S, Izzaddin SA, Rahmani M. Garcinia mangostana: A source of potential anti-cancer lead compounds against CEM-SS cell line. J Asian Nat Prod Res 2008;10(5-6):475-9.

Walker EB. HPLC analysis of selected xanthones in mangosteen fruit. J Sep Sci 2007;30(9):1229-34.

Zhao Y, Liu JP, Lu D, Li PY, Zhang LX. Two new xanthones from the pericarp of Garcinia mangostana. Nat Prod Res 2012;26(1):61-5.

Tosa H, Iinuma M, Tanaka T, Nozaki H, Ikeda S, Tsutsui K, et al. Anthraquinones from Neonauclea calycina and their inhibitory activity against DNA topoisomerase II. Chem Pharm Bull 1997;45:418-20.

Okudaira C, Ikeda Y, Kondo S, Furuya S, Hirabayashi Y, Koyano T, et al. Inhibition of acidic sphingomyelinase by xanthone compounds isolated from Garcinia speciosa. J Enzyme Inhib 2000;15(2):129-38.

Iikubo K, Ishikawa Y, Ando N, Umezawa K.The first direct synthesis of α-mangostin, a potent inhibitor of the acidic sphingomyelinase. Tetrahedron Lett 2002;43:291-3.

Furukawa K, Shibusawa K, Chairungsrilerd N, Ohta T, Nozoe S, Ohizumi Y. Histaminergic and serotonergic receptor blocking substances from the medicinal plant Garcinia mangostana. Jpn J Pharmacol 1996;71:337-40.

Bertrand R, Solary E, Jenkins J, Pommier Y. Apoptosis and its modulation in human promyelocytic HL-60 cells treated with DNA topoisomerase I and II inhibitors. Exp Cell Res 1993;207(2):388-97.

Brenner B, Ferlinz K, Grassmé H, Weller M, Koppenhoefer U, Dichgans J, et al. Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ 1998;5(1):29-37.

O’Brien NW, Gellings NM, Guo M, Barlow SB, Glembotski CC, Sabbadini RA Factor associated with neutral sphingomyelinase activation and its role in cardiac cell death. Circ Res 2003;92(6):589-91.

Pászty K, Penheiter AR, Verma AK, Padányi R, Filoteo AG, Penniston JT, et al. Asp1080 upstream of the calmodulin-binding domain is critical for autoinhibition of hPMCA4b. J Biol Chem 2002;277(39):36146-51.

Blagosklonny MV, Pardee AB. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res 2001;61(11):4301-5.

Senderowicz AM. The cell cycle as a target for cancer therapy: Basic and clinical findings with the small moleculeinhibitors flavopiridol and UCN-01. Oncologist 2002;7:12-9.

Stewart ZA, Westfall MD, Pietenpol JA Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci 2003;24(3):139-45.

Wang X, Gorospe M, Huang Y, Holbrook NJ. p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene 1997;15(24):2991-7.

Katayose Y, Kim M, Rakkar AN, Li Z, Owan KH, Seth P, et al. Promoting apoptosis: A novel activity associated with the cyclin-dependent kinase inhibitor p2. Cancer Res 1997;57:5441-5.

Yuan J, Krämer A, Matthess Y, Yan R, Spänkuch B, Gätje R, et al. Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene 2006;25(12):1753-62.

Kamasani U, Huang M, Duhadaway JB, Prochownik EV, Donover PS, Prendergast GC. Cyclin B1 is a critical target of RhoB in the cell suicide program triggered by farnesyl transferase inhibition. Cancer Res 2004;64(22):8389-96.

Lai D, Weng S, Wang C, Qi L, Yu C, Fu L, et al. Small antisense RNA to cyclin D1 generated by pre-tRNA splicing inhibits growth of human hepatoma cells. FEBS Lett 2004;576(3):481-6.

O’Connor DS, Wall NR, Porter AC, Altieri DC. A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2002;2(1):43-54.

Huang SC, Ho CT, Lin-Shiau SY, Lin JK. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem Pharmacol 2005;69(2):221-32.

Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci U S A 1994;91(10):4293-7.

Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999;274(31):21491-4.

Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1990;13:781-92.

Sliva D. Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Curr Cancer Drug Targets 2004;4:327-36.

Lee YB, Ko KC, Shi MD, Liao YC, Chiang TA, Wu PF, et al. alpha-Mangostin, a novel dietary xanthone, suppresses TPA-mediated MMP-2 and MMP-9 expressions through the ERK signaling pathway in MCF-7 human breast adenocarcinoma cells. J Food Sci 2010;75(1):H13-23.

Kwon GT, Cho HJ, Chung WY, Park KK, Moon A, Park JH. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: Possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem 2009;20:663-76.

Chen PN, Hsieh YS, Chiou HL, Chu SC. Silibinin inhibits cell invasion through inactivation of both PI3K-Akt andMAPK signaling pathways. Chem Biol Interact 2005;156:141-50.

Lee SJ, Park SS, Lee US, Kim WJ, Moon SK. Signaling pathway for TNF-alpha-induced MMP-9 expression: Mediation through p38 MAP kinase, and inhibition by anti-cancer molecule magnolol in human urinary bladder cancer 5637 cells. Int Immunopharmacol 2008;8:1821-6.

Hung SH, Shen KH, Wu CH, Liu CL, Shih YW. Alpha-mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway. J Agric Food Chem 2009;57(4):1291-8.

Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res 2004;24(5A):2783-840.

Sah JF, Balasubramanian S, Eckert RL, Rorke EA. Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J Biol Chem 2004;279(13):12755-62.

Nakagawa Y, Iinuma M, Naoe T, Nozawa Y, Akao Y. Characterized mechanism of alpha-mangostin-induced cell death: Caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem 2007;15(16):5620-8.

Itoh T, Ohguchi K, Iinuma M, Nozawa Y, Akao Y. Inhibitory effect of xanthones isolated from the pericarp ofGarcinia mangostana L. on rat basophilic leukemia RBL-2H3 celldegranulation. Bioorg Med Chem 2008;16:4500-8.

Taylor WC, Mangostin G. Prenylated xanthones as potentialantiplasmodial substances. Planta Med 2006;72:912-6.

Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001;94(2):153-6.

Bird RP. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: Preliminary findings. Cancer Lett 1987;37(2):147-51.

Bird RP, Good CK. The significance of aberrant crypt foci in understanding the pathogenesis of colon cancer. Toxicol Lett 2000;112-113:395-402.

Yoshimi N, Kawabata K, Hara A, Matsunaga K, Yamada Y, Mori H. Inhibitory effect of NS-398, a selective cyclooxygenase-2 inhibitor, on azoxymethane-induced aberrant crypt foci in colon carcinogenesis of F344 rats. Jpn J Cancer Res 1997;88(11):1044-51.

Suzui M, Ushijima T, Dashwood RH, Yoshimi N, Sugimura T, Mori H, et al. Frequent mutations of the rat beta-catenin gene in colon cancers induced by methylazoxymethanol acetate plus 1-hydroxyanthraquinone. Mol Carcinog 1999;24(3):232-7.

Hirose Y, Kuno T, Yamada Y, Sakata K, Katayama M, Yoshida K, et al. Azoxymethane-induced beta-catenin-accumulated crypts in colonic mucosa of rodents as an intermediate biomarker for colon carcinogenesis. Carcinogenesis 2003;24(1):107-11.

Yamada Y, Yoshimi N, Hirose Y. Sequential analysis of morphological and biological properties of beta-catenin-accumulated crypts, provable premalignant lesions independent of aberrant crypt foci in rat colon carcinogenesis. Cancer Res 2001;61:1874-8.

Yamada Y, Yoshimi N, Hirose Y, Hara A, Shimizu M, Kuno T, et al. Suppression of occurrence and advancement of beta-catenin-accumulated crypts, possible premalignant lesions of colon cancer, by selective cyclooxygenase-2 inhibitor, celecoxib. Jpn J Cancer Res 2001;92(6):617-23.

Yamada Y, Oyama T, Hirose Y, Hara A, Sugie S, Yoshida K, et al. Beta-Catenin mutation is selected during malignant transformation in colon carcinogenesis. Carcinogenesis 2003;24(1):91-7.

Ho CK, Huang YL, Chen CC. Garcinone E, a xanthone derivative, has potent cytotoxic effect against hepatocellular carcinoma cell lines. Planta Med 2002;68(11):975-9.

Nabandith V, Suzui M, Morioka T, Kaneshiro T, Kinjo T, Matsumoto K, et al. Inhibitory effects of crude alpha-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1, 2-dimethylhydrazine in the rat. Asian Pac J Cancer Prev 2004;5(4):433-8.

Wang X. The expanding role of mitochondria in apoptosis. Gene Dev 2001;15:2922-33.

van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 2003;304(3):487-97.

Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3(6):673-82.

Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet 1999;33:29-55.

Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol

;32(11-12):1123-36.

Suksamrarn S, Komutiban O, Ratananukul P, Chimnoi N, Lartpornmatulee N, Suksamrarn A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull (Tokyo) 2006;54(3):301-5.

Syamsudin S, Farida F, Widowati D, Faizatun F. Profil distribusi dan eliminasi senyawa α-mangostin setelah pemberian oral pada tikus. J Sains Teknol Far 2008;13:1-2.

Muchtaridi M, Suryani D, Qosim WA, Saptarini NM. Quantitative analysis of α-mangostin in mangosteen (Garcinia mangostana l.) pericarp extracts from four districts of west java by HPLC method. Int J Pharm Pharm Sci 2016;8:232-6.

Chiang LC, Cheng HY, Liu MC, Chiang W, Lin CC. In vitro evaluation of antileukemic activity of 17 commonly used fruits and vegetables in Taiwan. Lebensm Wiss Technol 2004;37:539-44.

Moongkarndi P, Kosem N, Luanratana O, Jongsomboonkusol S, Pongpan N. Anti-proliferative activity of Thai medicinal plant extracts on human breast adenocarcinoma cell line. Fitoterapia 2004;75:375-7.

Matsumoto K, Akao Y, Kobayashi E, Ohguchi K, Ito T, Tanaka T, et al. Induction of apoptosis by xanthones from Mangosteen in human leukemia cell lines. J Nat Prod 2003;66:1124-7.

Yoo JH, Kang K, Jho EH, Chin YW, Kim J, Nho CW. A and c-mangostin inhibit the proliferation of colon cancer cells via b-catenin gene regulation in WNT/cGMP signaling. Food Chem 2011;129:1559-66.

Aisha A, Abu-Salah K, Ismail Z, Abdul MA. In vitro and in vivo anti-colon cancer effects of Garcinia mangostana xanthones extract. BMC Complement Altern Med 2012;12:104-12.

Krajarng A, Nilwarankoon S, Suksamrarn S, Watanapokasin R. Anti-proliferative effect of a-mangostin on canine osteosarcoma cells. Res Vet Sci 2012;93:788-94.

Published

01-12-2017

How to Cite

Muchtaridi, M., and C. A. Wijaya. “ANTICANCER POTENTIAL OF α-MANGOSTIN”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 12, Dec. 2017, pp. 440-5, doi:10.22159/ajpcr.2017.v10i12.20812.

Issue

Section

Original Article(s)