MANAGEMENT OF PSORIASIS: A FOCUS ON PHYTOCHEMICALS

Authors

  • PADMINI IRIVENTI Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.
  • N Vishal Gupta JSSCollege of Pharmacy
  • VISHAL GUPTA N Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.

DOI:

https://doi.org/10.22159/ajpcr.2019.v12i6.31060

Keywords:

Psoriasis,, Curcumin,, Caffeine,, Chlorogenic acid,, Animal models

Abstract

Psoriasis is a hyperproliferative, autoimmune skin disorder. There are several therapeutic agents used topically and systemically, but they have adverse effects. It has been reported that beta-blockers intensify psoriatic plaque and decrease the concentration of intracellular cyclic adenosine monophosphate (cAMP). In the psoriatic epidermis, the level of cAMP decreases. Caffeine is a methylxanthine that inhibits phosphodiesterase enzyme and results in a higher concentration of intracellular cAMP. Adding caffeine to topical skin treatments would be a simple way to reduce inflammation in patients with psoriasis. Furthermore, phenolic acids like chlorogenic acid (3-CQA) have recently gained substantial attention due to their various biological and pharmacological effects. Curcumin (dihydroferuloyl-methane) is a flavonoid that possesses anti-inflammatory, antitumor, and antioxidative properties. Cell proliferation arrest is caused by curcumin and apoptosis is induced in several types of human and animal cells. Imiquimod‐induced murine psoriasis is most used animal models to study this disease, due to the usage of healthy mice. Xenotransplants of human psoriatic skin in immunodeficient mice were the first approach for the association of immunologic problems with the development of psoriasis and have been also useful for the evaluation of new therapeutic agents.

Downloads

Download data is not yet available.

References

Sanchez AP. Imunopatogênese da psoríase. An Bras Dermatol 2010;85:747-9.

Christophers E. Psoriasis epidemiology and clinical spectrum. Clin Exp Dermatol 2001;26:314-20.

Maia CP, Takahashi MD, Romiti R. Consenso Brasileiro de Psoríase 2012 Guias de Avaliação e Tratamento. Sociedade Brasileira de Dermatologia. 2nd ed. Projeto de Educação Médica Continuada; 2012.

Naiara LM, Andréa NC, Isaias D. n-3 polyunsaturated fatty acids supplementation in psoriasis: A review. Nutrire 2017;42:5.

Bowcock AM, Krueger JG. Getting under the skin: The immunogenetics of psoriasis. Nat Rev Immunol 2005;5:699-711.

Schön MP, Boehncke WH. Psoriasis. N Engl J Med 2005;352:1899-912.

Gaspari AA. Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol 2006;54:S67-80.

Davidson A, Diamond B. Autoimmune diseases. N Engl J Med 2001;345:340-50.

John BJ. Psoriasis. Medicine 2013;41:334-40.

Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature 2007;445:866-73.

Guttman-Yassky E, Krueger JG. Psoriasis: Evolution of pathogenic concepts and new therapies through phases of translational research. Br J Dermatol 2007;157:1103-15.

Alwan W, Nestle FO. Pathogenesis and treatment of psoriasis: Exploiting pathophysiological pathways for precision medicine. Clin Exp Rheumatol 2015;33:S2-6.

Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014;32:227-55.

Kim J, Krueger JG. The immunopathogenesis of psoriasis. Dermatol Clin 2015;33:13-23.

Bowcock AM, Shannon W, Du F, Duncan J, Cao K, Aftergut K, et al. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet 2001;10:1793-805.

Gordon-Elliott JS, Muskin PR. Managing the patient with psychiatric issues in dermatologic practice. Clin Dermatol 2013;31:3-10.

Ashwin BK, Rohini RP, Shantanu BK. A comprehensive review. Int J Pharm Life Sci 2011;2:857-77.

Fredholm BB. Notes on the history of caffeine use. Handb Exp Pharmacol 2011;200:1-9.

Brunyé TT, Mahoney CR, Lieberman HR, Giles GE, Taylor HA. Acute caffeine consumption enhances the executive control of visual attention in habitual consumers. Brain Cogn 2010;74:186-92.

Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: Current status and future prospects. Curr Med Chem 2011;18:3871-88.

Barcelos RP, Souza MA, Amaral GP, Stefanello ST, Bresciani G, Fighera MR, et al. Caffeine supplementation modulates oxidative stress markers in the liver of trained rats. Life Sci 2014;96:40-5.

Zeidán-Chuliá F, Gelain DP, Kolling EA, Rybarczyk-Filho JL, Ambrosi P, Terra SR, et al. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev 2013;2013:791795.

Ashihara H. Metabolism of alkaloids in coffee plants. Braz J Plant Physiol 2006;18:1-8.

Camp RDR. Psoriasis. In: Champion RH, Burton JL, Ebling FJ, Gange MD, editors. Textbook of Dermatology. 6th ed., Vol. 2. Oxford: Blackwell Scientific Publications; 1998. p. 1589-614.

Hoffman BB. Catecholamine, sympathomimetic drugs and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Goodman AG, editors. The Pharmacological Basis of Therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 253-5.

Vali A, Asilian A, Khalesi E, Khoddami L, Shahtalebi M, Mohammady M, et al. Evaluation of the efficacy of topical caffeine in the treatment of psoriasis vulgaris. J Dermatolog Treat 2005;16:234-7.

Boushey HA. Bronchodilators and other agents used in asthma. In: Katzung BG, editor. Basic and Clinical Pharmacology. 7th ed. Los Altos, CA: Appleton and Lange; 1998. p. 330-7.

Petrazzuoli M, Goldsmith LA. Molecular mechanisms of cell signaling. In: Freedberg IM, Eisen AZ, Wolf K, Thomas B, editors. Fitzpatrick’s Dermatology in General Medicine. 5th ed. New York: McGraw Hill; 1999. p. 120-3.

Alashqar M, Goldstein N. Caffeine in the Treatment of Atopic Dermatitis and Psoriasis: A Review. P010. London: Psoriasis: From Gene to Clinic International Congress; 2017. p. 77.

Ingrid T. Caffeine can Reduce Inflammation in Patients with Eczema and Psoriasis. Switzerland: Dermatology Times; 2017.

Georgian L, Moraru I, Comişel V. Caffeine effects on the chromosomal aberrations induced in vivo by sarcolysine and methotrexate. Morphol Embryol (Bucur) 1980;26:179-83.

Gołos B, Malec J. Enhancement of methotrexate-induced growth inhibition, cell killing and DNA lesions in cultured L5178Y cells by the reduction of DNA repair efficiency. Biochem Pharmacol 1989;38:1743-8.

Maskaleris T, Lialiaris T, Triantaphyllidis C. Induction of cytogenetic damage in human lymphocytes in vitro and of antineoplastic effects in Ehrlich ascites tumor cells in vivo treated by methotrexate, hyperthermia and/or caffeine. Mutat Res 1998;422:229-36.

Tsuchiya H, Yasutake H, Yokogawa A, Baba H, Ueda Y, Tomita K, et al. Effect of chemotherapy combined with caffeine for osteosarcoma. J Cancer Res Clin Oncol 1992;118:567-9.

Voorhees JJ, Chambers DA, Duell EA, Marcelo CL, Krueger GG. Molecular mechanisms in proliferative skin disease. J Invest Dermatol 1976;67:442-50.

Man M, Wang F. Treatment of psoriasis with aminophylline. Int J Dermatol 1992;31:370-1.

Raynaud F, Gerbaud P, Evain-Brion D. Beneficial effect of a combination of retinoids and long-acting theophylline in the treatment of psoriasis vulgaris. Br J Dermatol 1994;131:740-1.

Roflumilast: APTA 2217, B9302-107, BY 217, BYK 20869. Drugs R D 2004;5:176-81. DOI: 10.2165/00126839-200405030-00009.

Clifford MN. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J Sci Food Agric 1999;79:362-72.

Naso LG, Valcarcel M, Roura-Ferrer M, Kortazar D, Salado C, Lezama L, et al. Promising antioxidant and anticancer (human breast cancer) oxidovanadium (IV) complex of chlorogenic acid. Synthesis, characterization and spectroscopic examination on the transport mechanism with bovine serum albumin. J Inorg Biochem 2014;135:86-99.

Meng S, Cao J, Feng Q, Peng J, Hu Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid Based Complement Alternat Med 2013;2013:801457.

Sasaki K, Alamed J, Weiss J, Villeneuve P, Giraldo LJ, Lecomte J. Relationship between the physical properties of chlorogenic acid esters and their ability to inhibit lipid oxidation in oil-in-water emulsions. Food Chem 2010;118:830-5.

Suzuki A, Kagawa D, Ochiai R, Tokimitsu I, Saito I. Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertens Res 2002;25:99-107.

Lafay S, Gil-Izquierdo A, Manach C, Morand C, Besson C, Scalbert A, et al. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 2006;136:1192-7.

Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm 2010;2010:289645.

Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Cavin C, et al. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metab Dispos 2009;37:1749-58.

Renouf M, Guy PA, Marmet C, Fraering AL, Longet K, Moulin J, et al. Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: Small intestine and colon are key sites for coffee metabolism. Mol Nutr Food Res 2010;54:760-6.

Stalmach A, Steiling H, Williamson G, Crozier A. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch Biochem Biophys 2010;501:98-105.

Zhao Y, Wang J, Ballevre O, Luo H, Zhang W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens Res 2012;35:370-4.

Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017;22:E358.

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752-61.

Venditti A, Bianco A, Frezza C, Conti F, Bini LM, Giuliani C, et al. Essential oil composition polar compounds, glandular trichomes and biological activity of Hyssopus officinalis subsp. aristatus (Godr.) Nyman from central Italy. Ind Crops Prod 2015;77:353-63.

Traub M, Marshall K. Psoriasis pathophysiology, conventional, and alternative approaches to treatment. Altern Med Rev 2007;12:319-30.

Jadranka D, Stefan K, Stephanie H, Ramirez BA, Jaime M, et al. Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light. J Invest Dermatol 2007;127:1992-2000.

Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R. Anti-tumor and antioxidant activaty of natural curcuminoids. Cancer Lett 1995;94:79-83.

Joe B, Rao UJ, Lokesch BR. Presence of an acidic glycoprotein in the serum of atritic rats: Modulation by capsaicin and curcumin. Mol Cell Biochem 1997;169:125-34.

Xu YX, Pindolia KR, Janakiraman N, Noth CJ, Chapman RA, Gautam SC, et al. Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down-regulates chemokine expression in bone marrow stromal cells. Exp Hematol 1997;25:413-22.

Heng MC, Song MK, Harker J, Heng MK. Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol 2000;143:937-49.

Sharma OP. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 1976;25:1811-2.

Unnikrishnan MK, Rao MN. Inhibition of nitrite induced oxidation of hemoglobin by curcuminoids. Pharmazie 1995;50:490-2.

Osawa T, Sugiyama Y, Inayoshi M, Kawakishi S. Antioxidative activity of tetrahydrocurcuminoids. Biosci Biotechnol Biochem 1995;59:1609-12.

Iqbal M, Sharma SD, Okazaki Y, Fujisawa M, Okada S. Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: Possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol 2003;92:33-8.

Elizabeth K, Rao MNA. Effect of curcumin on hydroxyl radical generation through Fenton reaction. Int J Pharm 1989;57:173-6.

Elizabeth K, Rao MNA. Oxygen radical scavenging activity of curcumin. Int J Pharm 1990;58:237-40.

Pol A, Bergers M, Schalkwijk J. Comparison of antiproliferative effects of experimental and established antipsoriatic drugs on human keratinocytes, using a simple 96-well-plate assay. In vitro Cell Dev Biol Anim 2003;39:36-42.

Bosman B. Testing of lipoxygenase inhibitors, cyclooxygenase inhibitors, drugs with immunomodulating properties and some reference antipsoriatic drugs in the modified mouse tail test, an animal model of psoriasis. Skin Pharmacol 1994;7:324-34.

Miquel J, Bernd A, Sempere JM, Díaz-Alperi J, Ramírez A. The curcuma antioxidants: Pharmacological effects and prospects for future clinical use. A review. Arch Gerontol Geriatr 2002;34:37-46.

Hanselmann C, Mauch C, Werner S. Haem oxygenase-1: A novel player in cutaneous wound repair and psoriasis? Biochem J 2001;353:459-66.

Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ, et al. Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem 2012;23:1498-507.

Park MJ, Moon SJ, Lee SH, Yang EJ, Min JK, Cho SG, et al. Curcumin attenuates acute graft-versus-host disease severity via in vivo regulations on th1, th17 and regulatory T cells. PLoS One 2013;8:e67171.

Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One 2013;8:e67078.

Tonnesen HH, de Vries H, Karlsen J, Beijersbergen van HG. Studies on curcumin and curcuminoids. IX: Investigation of the photobiological activity of curcumin using bacterial indicator systems. J Pharm Sci 1987;76:371-73.

Cho JW, Lee KS, Kim CW. Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated haCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int J Mol Med 2007;19:469-74.

Sun J, Han J, Zhao Y, Zhu Q, Hu J. Curcumin induces apoptosis in tumor necrosis factor-alpha-treated haCaT cells. Int Immunopharmacol 2012;13:170-4.

Reddy AC, Lokesh BR. Effect of curcumin and eugenol on iron-induced hepatic toxicity in rats. Toxicology 1996;107:39-45.

Aggarwal BB, Gupta SC, Sung B. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 2013;169:1672-92.

Bosman B, Matthiesen T, Hess V, Friderichs E. A quantitative method for measuring antipsoriatic activity of drugs by the mouse tail test. Skin Pharmacol 1992;5:41-8.

Hofbauer M, Dowd PM, Atkinson J, Whitefield M, Greaves MW. Evaluation of a therapeutic concentration of dithranol in the mouse-tail test. Br J Dermatol 1988;118:85-9.

van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 2009;182:5836-45.

Boehncke WH, Kock M, Hardt-Weinelt K, Wolter M, Kaufmann R. The SCID-hu xenogeneic transplantation model allows screening of anti-psoriatic drugs. Arch Dermatol Res 1999;291:104-6.

Boehncke WH. The SCID-hu xenogeneic transplantation model: Complex but telling. Arch Dermatol Res 1999;291:367-73.

Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis. J Clin Invest 1996;98:1878-87.

Boehncke WH. Psoriasis and bacterial superantigens formal or causal correlation? Trends Microbiol 1996;4:485-9.

Boehncke WH, Dressel D, Zollner TM, Kaufmann R. Pulling the trigger on psoriasis. Nature 1996;379:777.

Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014;32:40-51.

Krueger GG, Jorgensen CM. Experimental models for psoriasis. J Invest Dermatol 1990;95:56S-58S.

Auriemma M, Brzoska T, Klenner L, Kupas V, Goerge T, Voskort M, et al. Α-MSH-stimulated tolerogenic dendritic cells induce functional regulatory T cells and ameliorate ongoing skin inflammation. J Invest Dermatol 2012;132:1814-24.

van den Bogaard EH, Tjabringa GS, Joosten I, Vonk-Bergers M, van Rijssen E, Tijssen HJ, et al. Crosstalk between keratinocytes and T cells in a 3D microenvironment: A model to study inflammatory skin diseases. J Invest Dermatol 2014;134:719-27.

Wufuer M, Lee G, Hur W, Jeon B, Kim B, Choi T, et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep 2016;6:374-79.

Wahba A, Cohen H. Therapeutic trials with oral colchicine in psoriasis. Acta Derm Venereol 1980;60:515-20.

Briffa DV, Warin AP. Photochemotherapy in psoriasis: A review. J R Soc Med 1979;72:440-6.

Jin HL, Zhang RZ, Gao YX. Effect of artesunate on keratinocyte cultured in vitro. Chin J Trad Med Sci Tech 2007;14:176-78.

Zhang LL, Huang CQ, Zhang ZY, Wang ZR, Lin JM. Therapeutic effects of koumine on psoriasis: An experimental study in mice. Di Yi Jun Yi Da Xue Xue Bao 2005;25:547-9.

Ashihara H. Metabolism of alkaloids in coffee plants. Braz J Plant Physiol 2006;18:1-8.

Published

07-06-2019

How to Cite

PADMINI IRIVENTI, N. Vishal Gupta, and VISHAL GUPTA N. “MANAGEMENT OF PSORIASIS: A FOCUS ON PHYTOCHEMICALS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 12, no. 6, June 2019, pp. 12-18, doi:10.22159/ajpcr.2019.v12i6.31060.

Issue

Section

Review Article(s)