• NIKITA SEHGAL Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.
  • VISHAL GUPTA N Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.
  • SANDEEP KANNA Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.


In recent decades, the rise in the investigation of new drugs had made health-care system expensive compared to conventional drug delivery systems and techniques. The present drug delivery systems have become highly productive and are growing fast. Majority of the anticancer agent has low water solubility resulting in multistep synthetic routes that require higher selectivity and specificity that can cause difficulty in the development of the formulation. Nanosponges (NSs) are branched cyclodextrin (CD) polymeric systems which have proven to be a boon in the pharmaceutical and biomedical fields. Different kinds of NSs based on different types of CDs and crosslinkers are used for developing of new drug formulations from the past few years for various applications in health care. Nanotechnology has overcome the issues regarding the drug solubility, stability, and other parameters and has attained success in achieving of sustained release, increased activity, improved permeability, delivery of nucleoprotein, the stimuli-responsive release of the drug, and improved drug bioavailability. There is a huge eruption of research on NSs for cancer treatment. Multiple anticancer moieties have been developed, taking into account the pharmacological and physicochemical perspective of the drug to develop a NS formulation. Our target in this review is to catch an efficient and far-reaching NSs for malignancy cancer treatment announced until now. This survey will give a perfect stage for providing details for researchers taking a shot at using new polymers for improving the treatment of the disease using nanotechnology. The present article provides details regarding antineoplastic molecules and provides ideas on CD-based NSs specifically using curcumin, tamoxifen, resveratrol, quercetin, oxygen-NSs, temozolomide, doxorubicin, and 5-fluorouracil (5-FU), and erlotinib (ETB) glutathione.

Keywords: Nanosponges,, Cyclodextrin,, Antineoplastic, molecules.


1. Osmani RA, Aloorkar NH, Kulkarni AS, Kulkarni PK, Hani U, Thirumaleshwar S, et al. Novel cream containing microsponges of anti- acne agent: Formulation development and evaluation. Curr Drug Deliv 2015;12:504-16.
2. Rosen M. Delivery system handbook for personal care and cosmetic products: Technology, applications and formulations, personal care and cosmetic technology. Norwich: William Andrew. 2005.
3. Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: A versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:579-601.
4. Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Nanocarrier mediated combination drug delivery for chemotherapy – A review. J Drug Deliv Sci Technol 2017;39:362-71.
5. Momin MM, Zaheer Z, Zainuddin R, Sangshetti JN. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer. Artif Cells Nanomed Biotechnol 2018;46:1064-75.
6. Luo Y, Prestwich GD. Cancer-targeted polymeric drugs. Curr Cancer Drug Targets 2002;2:209-26.
7. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007;9:257-88.
8. Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene 2003;22:7512-23.
9. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, et al. Molecular targeting therapy of cancer: Drug resistance, apoptosis and survival signal. Cancer Sci 2003;94:15-21.
10. Couvreur P. Nanoparticles in drug delivery: Past, present and future. Adv Drug Deliv Rev 2013;65:21-3.
11. Couvreur P, Tulkens P, Roland M, Trouet A, Speiser P. Nanocapsules: A new type of lysosomotropic carrier. FEBS Lett 1977;84:323-6.
12. Chen ZG. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 2010;16:594-602.
13. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92.
14. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Control Release 2012;161:175-87.
15. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 2000;65:271-84.
16. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013;65:71-9.
17. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010;141:320-7.
18. Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?. Frontiers in pharmacology 2018;22:245.
19. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI- 007, compared with cremophor-based paclitaxel. Clin Cancer Res 2006;12:1317-24.
20. Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R. Glutathione bioresponsive cyclodextrin nanosponges. Chem Plus Chem 2016;81:439-43.
21. Lee CL, Wu CC, Chiou H, Syu C, Huang C, Yang C. Mesopourous platinum nanosponges as electrocatalysis for the oxygen reduction reaction in an acidic electrolyte. Int J Hydrogen Energy 2011;36:6433- 40.
22. Jordan VC. Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 2006;147 Suppl 1:S269-76.
23. Buddhadev L, Biswajit M.Tamoxifen citrate encapsulated sustained release liposomes: Preparation and evaluation of physicochemical properties. Sci Pharm 2010;78:507-15.
24. Jayanta KS, Rita M, Saibal KB, Ranadeep M, Angshuman B. Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles. Int J Biol Macromol 2011;49:390-6.
25. Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin- based nanosponges: Effective nanocarrier for tamoxifen delivery. Pharm Dev Technol 2013;18:619-25.
26. Martínez A, Benito-Miguel M, Iglesias I, Teijón JM, Blanco MD. Tamoxifen-loaded thiolated alginate-albumin nanoparticles as antitumoral drug delivery systems. J Biomed Mater Res A 2012;100:1467-76.
27. Bhatia A, Singh B, Raza K, Shukla A, Amarji B, Katare OP. Tamoxifen-loaded novel liposomal formulations: Evaluation of anticancer activity on DMBA-TPA induced mouse skin carcinogenesis. J Drug Target 2012;20:544-50.
28. Bilensoy E. Amphiphilic cyclodextrin nanoparticles for effective and safe delivery of anticancer drugs. Adv Exp Med Biol 2015;822:201.
29. Barbieri S, Sonvico F, Como C, Colombo G, Zani F, Buttini F, et al. Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: Loading, enzyme-trigger release and cell uptake. J Control Release 2013;167:276-83.
30. Sarwa KK, Suresh PK, Debnath M, Ahmad MZ. Tamoxifen citrate loaded ethosomes for transdermal drug delivery system: Preparation and characterization. Curr Drug Deliv 2013;10:466-76.
31. Jain AS, Goel PN, Shah SM, Dhawan VV, Nikam Y, Gude RP, et al. Tamoxifen guided liposomes for targeting encapsulated anticancer agent to estrogen receptor positive breast cancer cells: In vitro and in vivo evaluation. Biomed Pharmacother 2014;68:429-38.
32. Pandey SK, Ghosh S, Maiti P, Haldar C. Therapeutic efficacy and toxicity of tamoxifen loaded PLA nanoparticles for breast cancer. Int J Biol Macromol 2015;72:309-19.
33. Vivek R, Nipun Babu V, Thangam R, Subramanian KS, Kannan S. PH- responsive drug delivery of chitosan nanoparticles as tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces 2013;111:117-23.
34. How CW, Rasedee A, Manickam S, Rosli R. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: Characterization, stability assessment and cytotoxicity. Colloids Surf B Biointerfaces 2013;112:393-9.
35. Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 2014;11:931-41.
36. Jain D, Gursalkar T, Bajaj A. Nanosponges of an anticancer agent for potential treatment of brain tumors. Am J Neuroprot Neuroregen 2013;5:32-43.
37. Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C. Temozolomide: A review of its discovery, chemical properties, pre- clinical development and clinical trials. Cancer Treat Rev 1997;23:35-61.
38. Chen Z, Lai X, Song S, Zhu X, Zhu J. Nanostructured lipid carriers based temozolomide and gene co-encapsulated nanomedicine for gliomatosis cerebri combination therapy. Drug Deliv 2016;23:1369-73.
39. Dilnawaz F, Sahoo SK. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur J Pharm Biopharm 2013;85:452-62.
40. Di Martino A, Sedlarik V. Amphiphilic chitosan-grafted-functionalized polylactic acid based nanoparticles as a delivery system for doxorubicin and temozolomide co-therapy. Int J Pharm 2014;474:134-45.
41. Dou M, Huang G, Xi Y, Zhang N. Orthogonal experiments for optimizing the formulation and preparation conditions of temozolomide solid lipid nanoparticles. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2008;25:1141-5.
42. Jain A, Jain SK. Formulation and optimization of temozolomide nanoparticles by 3 factor 2 level factorial design. Biomatter 2013;3. pii: e25102.
43. Thirupathy A, Srinivas P, Ravindhra Babu DS, Mamidi S. Formulation and evaluation of sustained release implantable microspheres of temozolomide for brain targeting prepared by a novel technique. Int J Pharm Pharm Sci 2011;3:187-94.
44. Beevers CS, Huang S. Pharmacological and clinical properties of curcumin. Botanics 2011;1:5-18.
45. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014;35:3365-83.
46. Crupi V, Majolino D, Mele A, Rossi B, Trotta F, Venuti V. Modelling the interplay between covalent and physical interactions in cyclodextrin- based hydrogel: Effect of water confinement. Soft Matter 2013;9:6457-64.
47. Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res Treat 2014;46:2-18.
48. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007;4:807-18.
49. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett 2008;267:133-64.
50. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 1997;15:1867-76.
51. Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. Int J Pharm 2002;244:127-35.
52. Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol 2007;5:567-76.
53. Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem 2013;75:315-22.
54. Amri A, Chaumeil JC, Sfar S, Charrueau C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J Control Release 2012;158:182-93.
55. Vian MA, Tomao V, Gallet S, Coulomb PO, Lacombe JM. Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using chromolith columns. J Chromatogr A 2005;1085:224-9.
56. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: The in vivo evidence. Nat Rev Drug Discov 2006;5:493-506.
57. Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 2005;49:472-81.
58. Walle T, Hsieh F, DeLegge MH, Oatis JE Jr., Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 2004;32:1377-82.
59. Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL. Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 2010;54:7-16.
60. Lu Z, Cheng B, Hu Y, Zhang Y, Zou G. Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chem 2009;113:17-20.
61. Amri A, Le Clanche S, Thérond P, Bonnefont-Rousselot D, Borderie D, Lai-Kuen R, et al. Research paper: Resveratrol selfemulsifying system increases the uptake by endothelial cells and improves protection against oxidative stress-mediated death. Eur J Pharm Biopharm 2014;86:418-26.
62. Friedrich RB, Kann B, Coradini K, Offerhaus HL, Beck RCR, Windbergs M. Skin penetration behaviour of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur J Pharm Sci 2015;78:204-13.
63. Teskac K, Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 2010;390:61-9.
64. Caddeo C, Manconi M, Fadda AM, Lai F, Lampis S, Diez-Sales O, et al. Nanocarriers for antioxidant resveratrol: Formulation approach, vesicle self-assembly and stability evaluation. Colloids Surf B Biointerfaces 2013;111:327-32.
65. Chauhan AS. Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann N Y Acad Sci 2015;1348:134- 40.
66. Pando D, Matos M, Gutiérrez G, Pazos C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf B Biointerfaces 2015;128:398-404.
67. Jagtap S, Meganathan K, Wagh V, Winkler J, Hescheler J, Sachinidis A. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr Med Chem 2009;16:1451-62.
68. Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 2011;12:279-86.
69. Wang Q, Bao Y, Ahire J, Chao Y. Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery. Adv Healthc Mater 2013;2:459-66.
70. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B Biointerfaces 2010;80:184-92.
71. Tran TH, Guo Y, Song D, Bruno RS, Lu X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci 2014;103:840-52.
72. Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm 2011;404:231-7.
73. Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem 2006;56:209-13.
74. Anandam S, Selvamuthukumar S. Fabrication of cyclodextrin nanosponges for quercetin delivery: Physicochemical characterization, photostability, and antioxidant effects. J Mater Sci 2014;49:8140-53.
75. Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, et al. Encapsulation of acyclovir in new carboxylated cyclodextrin- based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 2013;443:262-72.
76. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010;74:193-201.
77. Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol 2013;9:998-1007.
78. Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems. Int J Pharm 2010;402:254-7.
79. Trotta F, Cavalli R, Martina K, Biasizzo M, Vitillo J, Bordiga S, et al. Cyclodextrin nanosponges as effective gas carriers. J Incl Phenom Macrocycl Chem 2011;71:189-94.
80. Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012;8:2091-9.
81. Cavalli R, Trotta F, Tumiatti W, Serpe L, Zara GP. 5-Fluorouracil loaded ?-cyclodextrin nanosponges: In vitro characterization and cytotoxicity. In: Proceedings XIII International Cyclodextrin Symposium, Turin, Italy; 2006. p. 207.
82. Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 2014;10:853-8.
83. Bhaskar C, Ahmed F, Kondapi AK, Golla K. A target-specific oral formulation of doxorubicinprotein nanoparticles: Efficacy and safety in hepatocellular cancer. J Cancer Educ 2013;4:644-52.
84. Mura P, Bragagni M, Mennini N, Ghelardini C. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting. J Pharm Pharm Sci 2012;15:184-196.
85. Candido CD, Campos ML, Correa Vidigal Assumpção JU, Pestana KC, Padilha EC, Carlos IZ, et al. Biocompatible microemulsion modifies the tissue distribution of doxorubicin. J Pharm Sci 2014;103:3297-301.
86. Elbialy NS, Fathy MM, Khalil WM. Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers. Phys Med 2014;30:843-8.
87. Jiang SP, He SN, Li YL, Feng DL, Lu XY, Du YZ, et al. Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin. Int J Nanomedicine 2013;8:3141-50.
88. Ryan GM, Kaminskas LM, Bulitta JB, McIntosh MP, Owen DJ, Porter CJ. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control Release 2013;172:128 36.
89. Win KY, Teng CP, Ye E, Low M, Han MY. Evaluation of polymeric nanoparticle formulations by effective imaging and quantitation of cellular uptake for controlled delivery of doxorubicin. Small 2015;11:1197-204.
90. Levacheva I, Samsonova O, Tazina E, Beck-Broichsitter M, Levachev S, Strehlow B, et al. Optimized thermosensitive liposomes for selective doxorubicin delivery: Formulation development, quality analysis and bioactivity proof. Colloids Surf B Biointerfaces 2014;121:248-56.
91. Mohamed SP, Pramod KT. Development and characterization of chitosan-polycarbophil interpolyelectrolyte complex-based 5-flurouracil formulations for buccal, vaginal and rectal application. DARU 2012;20:67:1-11.
92. Yassin AE, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA. Optimization of 5-flurouracil solid-lipid nanoparticles: A preliminary study to treat colon cancer. Int J Med Sci 2010;7:398 408.
93. Wilson B, Ambika TV, Patel RD, Jenita JL, Priyadarshini SR. Nanoparticles based on albumin: Preparation, characterization and the use for 5-flurouracil delivery. Int J Biol Macromol 2012;51:874-8.
94. Mallamma T, Thippeswamy BS, Bharathi DR, Snehalatha, Nagaraja TS, Yogananda R, et al. Formulation and evaluation of 5-flurouracil loaded HSA nanoparticle for controlled drug delivery. Int J Adv Res 2013;7:23-30.
95. Nasr M, Saad IE. Formulation and evaluation of mastic gum as a compression coat for colonic delivery of 5-flurouracil. Int J Drug Deliv 2011;3:481-91.
96. Sahoo SK, Sahoo SK, Behera A, Patil SV, Panda SK. Formulation, in vitro drug release study and anticancer activity of 5-fluorouracil loaded gellan gum microbeads. Acta Pol Pharm 2013;70:123-7.
97. Momin MM, Zaheer Z, Zainuddin R, Sangshetti JN. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer. Artif Cells Nanomed Biotechnol 2018;46:1064-75.
98. Atil SS, Gupta VR, Gupta KS, Doddayya H. Effect of ph, selected cyclodextrins and complexation methods on the solubility of lornoxicam. Int J Pharm Pharm Sci 2014;6:324-7.
99. Sambandam B, Sathesh Kumar S, Ayyaswamy A, Nagarjuna Yadav BV, Thiyagarajan D. Synthesis and characterization of poly d-l lactide (pla) nanoparticles for the delivery of quercetin. Int J Pharm Pharm Sci 2015;7:42-9.
129 Views | 78 Downloads
How to Cite
NIKITA SEHGAL, VISHAL GUPTA N, and SANDEEP KANNA. “A REVIEW ON NANOSPONGES A REVIEW ON NANOSPONGES: A BOON TO TARGETED DRUG DELIVERY FOR ANTICANCER DRUG”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 12, no. 7, May 2019, pp. 1-7, https://innovareacademics.in/journals/index.php/ajpcr/article/view/33118.
Review Article(s)