DESIGNING A VACCINE FOR CANCER: A LOOK INTO DENDRITIC CELL CANCER VACCINE

New era of dendritic cell cancer vaccine

  • PRAVEEN KUMAR VEMURI Department of Biotechnology, Centre for Genomics and Proteomics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.
  • ANKITHA KUNTA Department of Biotechnology, Centre for Genomics and Proteomics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.
  • RISHITHA CHALLAGULLA Department of Biotechnology, Centre for Genomics and Proteomics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.
  • ELIZABETH ANWITHA JOSE Department of Biotechnology, Centre for Genomics and Proteomics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.
  • VIJAYA LAKSHMI BODIGA BODIGA Department of Molecular Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India.

Abstract

The fundamental premise behind clinical approaches for dendritic cell-mediated immunization in cancer is that the limiting defect in natural antitumor immunity is at the level of antigen presentation. In contrast to vaccines for the prevention of infections, cancer vaccines are administered in a therapeutic mode, to eradicate antigen-bearing tumor cells already present in the host. Over the decades, the identification of antigens that can serve as targets for immune effectors has resulted in a profusion of strategies for activating tumor antigen-specific immune responses. Therapeutic vaccines, unlike prophylactic vaccines for the prevention of infections, all share some basic attributes, the presence of target antigens, and a method for delivering the antigen into the antigen-presentation machinery in conjunction with other molecules required to provide T-and/or B-cell activation.

Keywords: Cancer,, Vaccine,, Dendritic cell,, Antigen presenting cells,, Tumor,, Immunity.

References

1. Bhardwaj N, Friedman SM, Cole BC, Nisanian AJ. Dendritic cells are potent antigen-presenting cells for microbial superantigens. J Exp Med 1992;175:267-73.
2. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991;9:271-96.
3. Holt PG, Degebrodt A, O’Leary C, Krska K, Plozza T. T cell activation by antigen-presenting cells from lung tissue digests: Suppression by endogenous macrophages. Clin Exp Immunol 1985;62:586-93.
4. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013;39:38-48.
5. Kaiko GE, Horvat JC, Beagley KW, Hansbro PM. Immunological decision-making: How does the immune system decide to mount a helper T-cell response? Immunology 2008;123:326-38.
6. Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S, et al. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 2002;3:1156-62.
7. Näslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol 2013;190:2712-9.
8. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52.
9. Hanna N, Fidler IJ. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 1980;65:801-9.
10. Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: From ex vivo loading to in vivo targeting. Nat Rev Immunol 2007;7:790-802.
11. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002;20:621-67.
12. Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, et al. CXCL10/ IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011;22:121-30.
13. Wells AD, Malkovsky M. Heat shock proteins, tumor immunogenicity and antigen presentation: An integrated view. Immunol Today 2000;21:129-32.
14. Candido KA, Shimizu K, McLaughlin JC, Kunkel R, Fuller JA, Redman BG, et al. Local administration of dendritic cells inhibits established breast tumor growth: Implications for apoptosis-inducing agents. Cancer Res 2001;61:228-36.
15. Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology 2013;140:22-30.
16. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296-306.
17. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012;12:265-77.
18. Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995;3:459-73.
19. Sousa CR. Activation of dendritic cells: Translating innate into adaptive immunity. Curr Opin Immunol 2004;16:21-5.
20. Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001;193:F5-9.
21. Bachmann MF, Kopf M, Marsland BJ. Chemokines: More than just road signs. Nat Rev Immunol 2006;6:159-64.
22. Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res 2002;4 Suppl 3:S127-32.
23. Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol 2001;13:114-9.
24. Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi- Castagnoli P. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 1998;188:2175-80.
25. Zlotnik A, Moore TA. Cytokine production and requirements during T-cell development. Curr Opin Immunol 1995;7:206-13.
26. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775-87.
27. Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000;191:411-6.
28. Hackstein H, Morelli AE, Thomson AW. Designer dendritic cells for tolerance induction: Guided not misguided missiles. Trends Immunol 2001;22:437-42.
29. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007;25:267-96.
30. Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B, et al. Cutting edge: Impairment of dendritic cells and adaptive immunity by ebola and lassa viruses. J Immunol 2003;170:2797-801.
31. Stanley MA. Progress in prophylactic and therapeutic vaccines for human papillomavirus infection. Expert Rev Vaccines 2003;2:381-9.
32. Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: Developing the next generation of vaccines. Trends Immunol 2006;27:573-9.
33. Palucka K, Banchereau J. How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol 2002;14:420-31.
34. Braciale TJ. Antigen processing for presentation by MHC class I molecules. Curr Opin Immunol 1992;4:59-62.
35. Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995;267:243-6.
36. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007;315:107-11.
37. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004;199:9-26.
38. Delamarre L, Holcombe H, Mellman I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. J Exp Med 2003;198:111-22.
39. den Haan JM, Lehar SM, Bevan MJ. CD8+ but not CD8? dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 2000;192:1685-96.
40. Belz GT, Carbone FR, Heath WR. Cross-presentation of antigens by dendritic cells. Crit Rev Immunol 2002;22:439-48.
41. Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005;54:721-8.
42. Xia W, Pinto CE, Kradin RL. The antigen-presenting activities of Ia+ dendritic cells shift dynamically from lung to lymph node after an airway challenge with soluble antigen. J Exp Med 1995;181:1275-83.
43. Bousso P, Robey E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 2003;4:579-85.
44. Schuurhuis DH, Ioan-Facsinay A, Nagelkerken B, van Schip JJ, Sedlik C, Melief CJ, et al. Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8+ CTL responses in vivo. J Immunol 2002;168:2240-6.
45. Sad S, Marcotte R, Mosmann TR. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting th1 or th2 cytokines. Immunity 1995;2:271-9.
46. Märten A, Ziske C, Schöttker B, Renoth S, Weineck S, Buttgereit P, et al. Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. J Immunother 2001;24:502-10.
47. Chen L, Linsley PS, Hellström KE. Costimulation of T cells for tumor immunity. Immunol Today 1993;14:483-6.
48. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011;331:1565-70.
49. Nestle FO, Farkas A, Conrad C. Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol 2005;17:163-9.
50. Sprinzl GM, Kacani L, Schrott-Fischer A, Romani N, Thumfart WF. Dendritic cell vaccines for cancer therapy. Cancer Treat Rev 2001;27:247-55.
51. Vermaelen K. Strategies to improve cancer vaccine efficacy. Front Immunol 2019;10:8.
52. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD. DNA based immunization by in vivo transfection of dendritic cells. Nat Med 1996;2:1122.
53. Chang ST, Linderman JJ, Kirschner DE. Multiple mechanisms allow mycobacterium tuberculosis to continuously inhibit MHC class II-mediated antigen presentation by macrophages. Proc Natl Acad Sci U S A 2005;102:4530-5.
54. Anguille S, Smits EL, Cools N, Goossens H, Berneman ZN, Van Tendeloo VF, et al. Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med 2009;7:109.
55. Germain RN. MHC-dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation. Cell 1994;76:287-99.
56. Larsson M, Fonteneau JF, Bhardwaj N. Dendritic cells resurrect antigens from dead cells. Trends Immunol 2001;22:141-8.
57. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat Med 2001;7:33-40.
58. Hudu SA, Shinkafi SH, Umar S. An overview of recombinant vaccine technology, adjuvants and vaccine delivery methods. Int J Pharm Pharm Sci 2016;8:19-24.
59. Rea D, Johnson ME, Havenga MJ, Melief CJ, Offringa R. Strategies for improved antigen delivery into dendritic cells. Trends Mol Med 2001;7:91-4.
60. Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncologist 2002;7:46-59.
61. Lipford GB, Sparwasser T, Bauer M, Zimmermann S, Koch ES, Heeg K, et al. Immunostimulatory DNA: Sequence-dependent production of potentially harmful or useful cytokines. Eur J Immunol 1997;27:3420 6.
62. Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: Developing new strategies against cancer. J Biomed Biotechnol 2010;2010:174378.
63. Jinushi M, Tahara H. Cytokine gene-mediated immunotherapy: Current status and future perspectives. Cancer Sci 2009;100:1389-96.
64. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G, et al. Infection of human macrophages and dendritic cells with mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 2001;166:7033 41.
65. Holla SN, Nayak V, Bairy KL, Tripathy A, Holla NS. Her-2 gene, receptors and drug target: A systematic review. Int J Pharm Pharm Sci 2016;8:4-9.
66. Bodiga VL, Thokala S, Vemuri PK, Bodiga S. Zinc pyrithione inhibits caspase-3 activity, promotes erbB1-erbB2 heterodimerization and suppresses erbB2 downregulation in cardiomyocytes subjected to ischemia/reperfusion. J Inorg Biochem 2015;153:49-59.
67. Ebert O, Harbaran S, Shinozaki K, Woo SL. Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice. Cancer Gene Ther 2005;12:350-8.
68. Lee SC, Srivastava RM, López-Albaitero A, Ferrone S, Ferris RL. Natural killer (NK): Dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity. Immunol Res 2011;50:248-54.
69. Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: Dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005;5:112-24.
70. Przetak M, Chow J, Cheng H, Rose J, Hawkins LD, Ishizaka ST, et al. Novel synthetic LPS receptor agonists boost systemic and mucosal antibody responses in mice. Vaccine 2003;21:961-70.
71. Vidal V, Dewulf J, Bahr GM. Enhanced maturation and functional capacity of monocyte-derived immature dendritic cells by the synthetic immunomodulator murabutide. Immunology 2001;103:479-87.
72. Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L, et al. NK cells and cancer. J Immunol 2007;178:4011-6.
73. Rinaldo Jr CR, Piazza P. Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 2004;12:337-45.
74. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996;184:465-72.
75. Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J, et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 2003;63:2127-33.
76. Brody JD, Engleman EG. DC-based cancer vaccines: Lessons from clinical trials. Cytotherapy 2004;6:122-7.
77. Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: Infection and viral dissemination. Nat Rev Immunol 2006;6:859-68.
78. Gelao L, Criscitiello C, Esposito A, De Laurentiis M, Fumagalli L, Locatelli MA, et al. Dendritic cell-based vaccines: Clinical applications in breast cancer. Immunotherapy 2014;6:349-60.
79. Gilboa E. DC-based cancer vaccines. J Clin Invest 2007;117:1195-203.
80. Brandts CH. Innovating the outreach of comprehensive cancer centers. Mol Oncol 2019;13:619-23.
81. Finn OJ. The dawn of vaccines for cancer prevention. Nat Rev Immunol 2018;18:183-94.
82. Tannock IF, Hickman JA. Limits to personalized cancer medicine. N Engl J Med 2016;375:1289-94.
Statistics
220 Views | 57 Downloads
Citatons
How to Cite
PRAVEEN KUMAR VEMURI, ANKITHA KUNTA, RISHITHA CHALLAGULLA, ELIZABETH ANWITHA JOSE, and V. L. B. BODIGA. “DESIGNING A VACCINE FOR CANCER: A LOOK INTO DENDRITIC CELL CANCER VACCINE”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 12, no. 6, May 2019, pp. 27-31, doi:10.22159/ajpcr.2019.v12i6.33374.
Section
Review Article(s)