• KRITHIKA S Research scholar, Sathyabama University, Chennai-600119, Tamilnadu, India
  • CHELLARAM C Vel Tech Multitech Engineering College, Chennai-600062, Applied Biotechnology Department, Sur college of Applied Sciences, Sur-411, Oman


Objective: The objective of this study was to find the potency and bioefficacy of Asiatic acid and triterpene against four different plant fungal pathogens using a structure-based drug designing approach.

Methods: The pathogenic fungus which causes a dreadful effect on plants is reviewed from literature study, and its three-dimensional structures are retrieved from the protein data bank database. On the other hand, ligands are prepared. Finally, prepared fungal drug targets are docked with naturally isolated compounds using AutoDock tools.

Results: Both compounds Asiatic acid and triterpene structures are complementary to bind at the active site of four different drug targets. Comparatively, it is more favorable for Avr2 effector protein from Fusarium oxysporum with Ki value of 126.60 μM, 1.76 μM, and dock score value of −5.32 kcal/mol and −7.85 kcal/mol for Asiatic acid and triterpene, respectively. Thus, interaction analysis was carried out only for these protein-ligand complexes.

Conclusion: The computational biology study states that these two compounds can be the lead candidate for treating disease caused by plant fungal pathogen F. oxysporum. However, further study has to be done in vitro and in vivo to prove its same efficacy.

Keywords: Fungal pathogen, structure-based drug designing, auto dock tools, protein-ligand, computational biology, docking.


1. Jun Y, Tom H, Vijai B, Xiao-Lin C, Guotian Li. Plant Fungal Pathogenesis. BioMed Research International 2017;2017:1-2.
2. David M, Geoffrey DR, Anthony PJ. 21st century guidebook to fungi. In: David M, Geoffrey DR, Anthony PJ, editors. Fungal Diseases and Loss of World Agricultural Production. 2nd ed. UK: Cambridge University Press; 2019.
3. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 2012;13:414-30.
4. David M, Geoffrey DR, Anthony PJT. 21st century guidebook to fungi. In: David M, Geoffrey DR, Anthony PJ, editors. Necrotrophic and Biotrophic Pathogens of Plants. 2nd ed. UK: Cambridge University Press; 2019.
5. Ulises CS, Horacio CC, Maria GV, Alicia LM, Everardo LR, Maria GZ. Protein homology modeling docking and phylogenetic analyses of an endo-1,4-?-xylanase GH11 of Colletotrichum lindemuthianum. Mycol Progress 2017;16:577-91.
6. Mohammed A. An overview of distribution biology and the management of common bean anthracnose. J Plant Pathol Microb 2013;4:193.
7. Bailey JA, O’Connell RJ, Nash C. Infection strategy of Colletotrichum lindemuthiamun species. In: Bailey JA, Jeger MJ, editors. Colletotrichum: Biology Pathology and Control CAB International UK: Wallingford; 1992.
8. Ulises CS, Horacio CC, Maria GV, Alicia LM, Everardo LR, Maria GZ. Cloning and characterization of an endo-1,4-xylanase gene from Colletotrichum lindemuthianum and phylogenetic analysis of similar genes from phytopathogenic fungus. Afr J Microbiol Res 2016;10:1292-305.
9. Blair DE, Hekmat O, Schüttelkopf AW, Shrestha B, Tokuyasu K, Withers SG, et al. Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Biochemistry 2006;45:9416-26.
10. Armstrong GM, Armstrong JK. Formae speciales and races of Fusarium oxysporum causing wilt diseases. In: Cook R, editor. Fusarium: Diseases, Biology and Taxonomy University Park. Pennsylvania: Penn State University Press; 1981. p. 391-9.
11. Marentes-Culma R, Orduz-Díaz LL, Coy-Barrera E. Targeted metabolite profiling-based identification of antifungal 5-n-alkylresorcinols occurring in different cereals against Fusarium oxysporum. Molecules 2019;24:E770.
12. Di X, Cao L, Hughes RK, Tintor N, Banfield MJ, Takken FLW, et al. Structure-function analysis of the Fusarium oxysporum avr2 effector allows uncoupling of its immune-suppressing activity from recognition. New Phytol 2017;216:897-914.
13. Beckman CH, Mueller WC. Response of xylem parenchyma cells in tomato to vascular infection by Fusarium oxysporum F.sp. Lycopersici. Phytopathology 1987;77:1692-3.
14. Houterman PM, Ma L, van Ooijen G, de Vroomen MJ, Cornelissen BJ, Takken FL, et al. The effector protein avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J 2009;58:970-8.
15. Wang Z, Han Q, Zi Q, Lv S, Qiu D, Zeng H, et al. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae. PLoS One 2017;12:e0175734.
16. Templeton MD, Lamb CJ. Elicitors and defence gene activation. Plant Cell Environ 1988;11:395-401.
17. Liu M, Duan L, Wang M, Zeng H, Liu X, Qiu D, et al. Crystal structure analysis and the identification of distinctive functional regions of the protein elicitor mohrip2. Front Plant Sci 2016;7:1103.
18. Chen M, Zhang C, Zi Q, Qiu D, Liu W, Zeng H, et al. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. Plant Cell Rep 2014;33:1865-79.
19. Mendoza-Mendoza A, Berndt P, Djamei A, Weise C, Linne U, Marahiel M, et al. Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol Microbiol 2009;71:895-911.
20. Wahl R, Wippel K, Goos S, Kämper J, Sauer N. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 2010;8:e1000303.
21. Steinberg G, Perez-Martin J. Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 2008;18:61-7.
22. Usha T, Shanmugarajan D, Goyal AK, Kumar CS, Middha SK. Recent updates on computer-aided drug discovery: Time for a paradigm shift. Curr Top Med Chem 2017;17:3296-307.
23. Chandran D, Leena KP, Prathap M, Jinsha MJ, Jilsha G. In silico drug design and molecular docking studies of some novel benzothiazole derivatives as anti-cancer and anti-inflammatory agents. Int J Pharm Pharm Sci 2014;6:203-8.
24. Ravi SP, Rishikesh KT, Shikha S, Somenath G, Sunil KR, Priya S. Homology modelling and molecular docking study of organophosphates and pyrethroids in terms of potential toxicity. Int J Pharm Pharm Sci 2014;9:9-11.
25. Dhivya S, Sureshkumar C, Vijayakumar B, Srinivasan N. Pharmacophore based screening of epicatechin against colon cancer. Int J Pharm Sci Drug Res 2012;4:123-5.
358 Views | 57 Downloads
How to Cite
S, K., and C. C. “THEORETICAL APPROACH ON TARGETING PLANT FUNGAL PATHOGENIC PROTEINS AGAINST NATURALLY ISOLATED COMPOUNDS FROM CHITINIPHILUS SHINANONENSIS”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 12, no. 12, Oct. 2019, pp. 138-42, doi:10.22159/ajpcr.2019.v12i12.35639.
Original Article(s)