• MANDEEP SINGH Department of Pharmaceutics, Shivalik College of Pharmacy, Nangal, Punjab, India.
  • DHRUV DEV Department of Pharmaceutics, Shivalik College of Pharmacy, Nangal, Punjab, India.



In situ gelling system, Natural gum, Acacia catachu, Ciprofloxacin hydrochloride, Ocular Drug delivery


Objective: The object is to study acacia catechu gum in situ, forming gels with prolonged retention times for ocular drug delivery.

Methods: This study was sample collection and extraction, pre-formulation research, drug melting point and solubility preparation of standard stock solution, lambda max determination, and preparation of ciprofloxacin hydrochloride in situ gel.

Results: The melting point of ciprofloxacin hydrochloride was found to be 290°C. The solubility of ciprofloxacin hydrochloride in pH 2.0 and pH 6.8 media is 7.88 0.005 mg/ml and 0.080 0.05 mg/ml. The max of ciprofloxacin hydrochloride was found to be 276–277 nm in simulated tear fluid pH 7.4. Prepared in situ gelling systems were evaluated for interaction studies to ensure that no interaction occurred between drugs and polymers. The pH of the formulations was found to be 7.1–7.4, and the drug content was in the range of 92–98%. All the prepared in situ gelling systems were evaluated for sterility. After 7 days of incubation, the results showed no microbial growth in all formulations.

Conclusion: The developed formulation is a viable alternative to the conventional eye drops by virtue of its ability to enhanced bioavailability through its longer precorneal residence time.


Download data is not yet available.


Rajeshwari NP, Rachana SK. In situ gelling system: A novel approach for ophthalmic drug delivery. World J Pharm Pharm Sci 2014;3:423-40.

Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Curr Drug Deliv 2006;3:207-17. doi: 10.2174/156720106776359186, PMID 16611007.

Furrer P, Delie F, Plazonnet B. Ophthalmic Drug Delivery, Modified- Release Drug Delivery Technology. Raleigh, NC: Pharmaceu Tech, Inc.; 2008. p. 59-84.

Remington JP. Remington: The Science and Practice of Pharmacy. Philadelphia, PA: Lippincott Williams and Wilkins; 2006.

Le Bourlais CA, Treupel-Acar L, Rhodes CT, Sado PA, Leverge R. New ophthalmic drug delivery systems. Drug Dev Ind Pharm 1995;21:19- 59. doi: 10.3109/03639049509048095.

Gao Y, Sun Y, Ren F, Gao S. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm 2010;36:1131-8. doi: 10.3109/03639041003680826, PMID 20334543.

Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release 2001;73:205-11. doi: 10.1016/s0168-3659(01)00279-6, PMID 11516498.

Gupta H, Velpandian T, Jain S. Ion-and pH-activated novel in-situ gel system for sustained ocular drug delivery. J Drug Target 2010;18:499- 505. doi: 10.3109/10611860903508788, PMID 20055752.

Balasubramaniam J, Pandit JK. Ion-activated in situ gelling systems for sustained ophthalmic delivery of ciprofloxacin hydrochloride. Drug Deliv 2003;10:185-91. doi: 10.1080/713840402, PMID 12944139.

Ma WD, Xu H, Nie SF, Pan WS. Temperature-responsive, pluronic-g-poly(acrylic acid)copolymers in situ gels for ophthalmic drug delivery: Rheology, in vitro drug release, and in vivo resident property. Drug Dev Ind Pharm 2008;34:258-66. doi: 10.1080/03639040701580622, PMID 18363141.

Lin HR, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release 2000;69:379-88. doi: 10.1016/s0168-3659(00)00329-1, PMID 11102678.

Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 2005;57:1595-639. doi: 10.1016/j. addr.2005.07.005, PMID 16198021.

Barbu E, Verestiuc L, Nevell TG, Tsibouklis J. Polymeric materials for ophthalmic drug delivery: Trends and perspectives. J Mater Chem 2006;16:3439-43. doi: 10.1039/b605640g.

Pandit J, Bharathi D, Srinatha A, Ridhurkar D, Singh S. Long acting ophthalmic formulation of indomethacin: evaluation of alginate gel systems. Indian J Pharm Sci 2007;69:37. doi: 10.4103/0250- 474X.32105.

Juliano R. Challenges to Macromolecular Drug Delivery. London, United Kingdom: Portland Press Limited; 2007.

Lin K, Kasko AM. Carbohydrate-based Polymers for Immune Modulation. Washington, DC: ACS Publications; 2014.

Pahuja P, Arora S, Pawar P. Ocular drug delivery system: A reference to natural polymers. Expert Opin Drug Deliv 2012;9:837-61. doi: 10.1517/17425247.2012.690733, PMID 22703523.

Majeed A, Khan NA. Ocular in situ gel: An overview. J Drug Deliv Ther 2019;9:337-47. doi: 10.22270/jddt.v9i1.2231.

Mandal S, Thimmasetty MK, Prabhushankar G, Geetha M. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Investig 2012;2:78-82. doi: 10.4103/2230-973X.100042, PMID 23119236.

Tung CI, Kottaiyan R, Koh S, Wang Q, Yoon G, Zavislan JM, et al. Noninvasive, objective, multimodal tear dynamics evaluation of 5 over-the-counter tear drops in a randomized controlled trial. Cornea 2012;31:108-14. doi: 10.1097/ICO.0b013e31821ea667, PMID 22138585.

Krishnaswami V, Kandasamy R, Alagarsamy S, Palanisamy R, Natesan S. Biological acromolecules for ophthalmic drug delivery to treat ocular diseases. Int J Biol Macromol 2018;110:7-16. doi: 10.1016/j.ijbiomac.2018.01.120, PMID 29378276.

Sharma A, Bhushette PR, Annapure US. Physicochemical and rheological properties of Acacia catechu exudate gum. Carbohydr Polym Technol Appl 2021;2:100-27. doi: 10.1016/j.carpta.2021.100127.

Oztürk F, Kurt E, Inan UU, Kortunay S, Ilker SS, Başci NE, et al. The effects of prolonged acute use and inflammation on the ocular penetration of topical ciprofloxacin. Int J Pharm 2000;204:97-100. doi: 10.1016/s0378-5173(00)00483-x, PMID 11011991.

De S, Dey Y, Ghosh A. Phytochemical investigation and chromatographic evaluation of the different extracts of tuber of Amorphaphallus paeoniifolius (Araceae). Int J Pharm Biol Res 2010;1:150-7.

Yadav R, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol 2011;3:10-4.

Available from:

Hosseini-Parvar SH, Osano JP, Matia-Merino L. Emulsifying properties of basil seed gum: Effect of pH and ionic strength. Food Hydrocoll 2016;52:838-47. doi: 10.1016/j.foodhyd.2015.09.002.

Bhushette PR, Annapure US. Characterization of Acacia nilotica exudate gum and its film. J Food Meas Char 2020;14:3058-66. doi: 10.1007/s11694-020-00541-x.

Bhushette PR, Annapure US. Physicochemical, functional and rheological investigation of Soymida febrifuga exudate gum. Int J Biol Macromol. 2018;111:1116-23. doi: 10.1016/j.ijbiomac.2018.01.117, PMID 29366895.

Fathi M, Mohebbi M, Koocheki A. Introducing Prunus cerasus gum exudates: Chemical structure, molecular weight, and rheological properties. Food Hydrocoll. 2016;61:946-55. doi: 10.1016/J. FOODHYD.2016.07.004.

BP British Pharmacopoeia. Stationary Office 2009. BP British Pharmacopoeia; 2010. p. 5000.

Al-Bazzaz FY, Al-Kotaji M. Ophthalmic in-situ sustained gel of ciprofloxacin, preparation and evaluation study. Int J Appl Pharm 2018;10:153-61. doi: 10.22159/ijap.2018v10i4.26885.

Bachhav HD, Savkare A, Karmarkar R, Derle D. Development of poloxamer-based thermosensitive in situ ocular gel of betaxolol hydrochloride. Int J Pharm Pharm Sci 2015;7:4-8.

Paradkar MU, Parmar M. Formulation development and evaluation of natamycin niosomal in-situ gel for ophthalmic drug delivery. J Drug Deliv Sci Technol 2017;39:113-22. doi: 10.1016/j.jddst.2017.03.005.

Varshosaz J, Tabbakhian M, Salmani Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. Open Drug Deliv J 2008;2:61-70. doi: 10.2174/1874126600802010061.

Dewan M, Sarkar G, Bhowmik M, Das B, Chattoapadhyay AK, Rana D, et al. Effect of gellan gum on the thermogelation property and drug release profile of poloxamer 407 based ophthalmic formulation. Int J Biol Macromol 2017;102:258-65. doi: 10.1016/j.ijbiomac.2017.03.194, PMID 28390828.

Bhowmik M, Kumari P, Sarkar G, Bain MK, Bhowmick B, Mollick MM, et al. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int J Biol Macromol 2013;62:117-23. doi: 10.1016/j.ijbiomac.2013.08.024, PMID 23988556.

Alexandridis P, Hatton TA. Poly(ethylene oxide) poly (propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf 1995;77:1-46.

Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int J Pharm 2011;411:128-35. doi: 10.1016/j. ijpharm.2011.03.054, PMID 21459137.

Song J, Bi H, Xie X, Guo J, Wang X, Liu D. Preparation and evaluation of sinomenine hydrochloride in situ gel for uveitis treatment. Int Immunopharmacol 2013;17:99-107. doi: 10.1016/j.intimp.2013.05.020, PMID 23747586.



How to Cite

SINGH, M., and D. DEV. “ACACIA CATACHU GUM IN SITU FORMING GELS WITH PROLONGED RETENTION TIME FOR OCULAR DRUG DELIVERY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 15, no. 9, Sept. 2022, pp. 33-40, doi:10.22159/ajpcr.2022.v15i9.45269.



Original Article(s)