TUBEIMOSIDE-1, A TRITERPENOID SAPONIN: AN UPDATE ON ITS PHARMACOLOGICAL EFFECTS

Authors

  • LANAN WASSY SOROMOU Department of Applied Biology, University of Labé, 210 Labé, Republic of Guinea.
  • MAMADOU FODÉ CAMARA Department of Veterinary Medicine, Institute of Science and Veterinary Medicine, 09 Dalaba, Republic of Guinea.

DOI:

https://doi.org/10.22159/ajpcr.2022.v15i9.45291

Keywords:

Tubeimoside-1, Pharmacological activities, Natural compounds

Abstract

It is known that humans have been using natural products for medicinal use for ages. Tubeimoside-1 (TBMS1) is a triterpenoid saponin first isolated in China from Bolbostemma paniculatum (Maxim) Franquet, Cucurbitaceae. This review provides a deep overview on TBMS1 and extensively summarizes its pharmacological functions. As result, TBMS1 has drawn great interest in medicinal field due to its multiple pharmacological functions such as anticancer, anti-inflammatory, antitumor, antidiabetic, anti-human immunodeficiency viruses, and neuroprotective properties. Further, TBMS1 plays an important role in a wide range of pharmacological processes. Although possessing important functions, further experimentations are required to broaden the scope of its application.

Downloads

Download data is not yet available.

References

Patwardhan B. Ethnopharmacology and drug discovery. J Ethnopharmacol 2005;100:50-2. doi: 10.1016/j.jep.2005.06.006, PMID 16023811

Rey-Ladino J, Ross AG, Cripps AW, McManus DP, Quinn R. Natural products and the search for novel vaccine adjuvants. Vaccine 2011;29:6464-71. doi: 10.1016/j.vaccine.2011.07.041, PMID 21787827

Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. Eur J Med Chem 2011;46:4769-807. doi: 10.1016/j. ejmech.2011.07.057, PMID 21889825

Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012;2:303-36. doi: 10.3390/metabo2020303, PMID 24957513

Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem 2016;8:531-41. doi: 10.1038/ nchem.2479, PMID 27219696

Kinghorn AD, Pan L, Fletcher JN, Chai H. The relevance of higher plants in lead compound discovery programs. J Nat Prod 2011;74:1539-55. doi: 10.1021/np200391c, PMID 21650152

Cao J, Zhao E, Zhu Q, Ji J, Wei Z, Xu B, et al. Tubeimoside-1 inhibits glioblastoma growth, migration, and invasion via inducing ubiquitylation of MET. Cells 2019;8:774. doi: 10.3390/cells8080774

Kasai R, Miyakoshi M, Matsumoto K, Nie RL, Zhou J, Morita T, et al. Tubeimoside-1, a new cyclic bisdesmoside from Chinese cucurbitaceous folk medicine “tu bei mu”, a tuber of Bolbostemma paniculatum. Chem Pharm Bull (Tokyo) 1986;34:3974-7. doi: 10.1248/cpb.34.3974, PMID 3815619

Islam MS, Wang CY, Zheng JY, Paudyal N, Zhu YL, Sun HX. The potential role of tubeimosides in cancer prevention and treatment. Eur J Med Chem 2019;162:109-21. doi: 10.1016/j.ejmech.2018.11.001, PMID 30439592

Zafar M, Sarfraz I, Rasul A, Jabeen F, Samiullah K, Hussain G, et al. Tubeimoside-1, triterpenoid saponin, as a potential natural cancer killer. Nat Prod Commun 2018;13:643-50. doi: 10.1177/1934578X1801300530

Yu TX, Ma RD, Yu LJ. Structure-activity relationship of tubeimosides in anti-inflammatory, antitumor, and antitumor-promoting effects. Acta Pharmacol Sin 2001;22:463-8. PMID 11743898

Yu LJ, Ma RD, Wang YQ, Nishino H, Takayasu J, He WZ, et al. Potent anti-tumorigenic effect of tubeimoside 1 isolated from the bulb of Bolbostemma paniculatum (Maxim.) Franquet. Int J Cancer 1992;50:635-8. doi: 10.1002/ijc.2910500425, PMID 1537629

Weiss U. Inflammation. Nature 2008;454:427.

Sarfraz I, Rasul A, Jabeen F, Younis T, Zahoor MK, Arshad M, et al. Fraxinus: A plant with versatile pharmacological and biological activities. Evid Based Complement Alternat Med 2017;2017:4269868. doi: 10.1155/2017/4269868, PMID 29279716

Bao Y, Li H, Li QY, Li Y, Li F, Zhang CF, et al. Therapeutic effects of Smilax glabra and Bolbostemma paniculatum on rheumatoid arthritis using a rat paw edema model. Biomed Pharmacother 2018;108:309-15. doi: 10.1016/j.biopha.2018.09.004, PMID 30227323

Liu Z, Zhou L, Ma X, Sun S, Qiu H, Li H, et al. Inhibitory effects of tubeimoside I on synoviocytes and collagen-induced arthritis in rats. J Cell Physiol 2018;233:8740-53. doi: 10.1002/jcp.26754, PMID 29761884

Yang JB, Khan M, He YY, Yao M, Li YM, Gao HW, et al. Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro. Acta Pharmacol Sin 2016;37:950-62. doi: 10.1038/aps.2016.34, PMID 27292614

Zhang JB, Zhang L, Li SQ, Hou AH, Liu WC, Dai LL. Tubeimoside I attenuates inflammation and oxidative damage in a mice model of PM2.5-induced pulmonary injury. Exp Ther Med 2018;15:1602-7. doi: 10.3892/etm.2017.5597, PMID 29434745

Wu Q, Sun G, Yuan X, Soromou LW, Chen N, Xiong Y, et al. Tubeimoside-1 attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Immunopharmacol Immunotoxicol 2013;35:514-23. doi: 10.3109/08923973.2013.810643, PMID 23844578

Wang Y, Deng L, Wang Y, Zhong H, Jiang X, Chen J. Natural plant extract tubeimosid-I induces cytotoxicity via the mitochondrial pathway in human normal liver cells. Mol Med Rep 2011;4:713-8. doi: 10.3892/mmr.2011.483, PMID 21537846

Luo M, Luo S, Cheng Z, Yang X, Lv D, Li X, et al. Tubeimoside I improves survival of mice in sepsis by inhibiting inducible nitric oxide synthase expression. Biomed Pharmacother 2020;126:110083. doi: 10.1016/j.biopha.2020.110083, PMID 32272432

Dorsey ER, Holloway RG, Ravina BM. Biomarkers in Parkinson’s disease. Expert Rev Neurother 2006;6:823-31. doi: 10.1586/14737175.6.6.823, PMID 16784406

Doty RL. Olfaction in Parkinson’s disease. Parkinsonism Relat Disord 2007;13:S225-8. doi: 10.1016/S1353-8020(08)70006-3, PMID 18267240

Eckert T, Feigin A, Lewis DE, Dhawan V, Frucht S, Eidelberg D. Regional metabolic changes in parkinsonian patients with normal dopaminergic imaging. Mov Disord 2007;22:167-73. doi: 10.1002/ mds.21185, PMID 17133454

Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 2007;22:1689-707; quiz 1837. doi: 10.1002/mds.21507, PMID 17542011

Factor SA, Molho ES, Feustel PJ, Brown DL, Evans SM. Long-term comparative experience with tolcapone and entacapone in advanced Parkinson’s disease. Clin Neuropharmacol 2001;24:295-9. doi: 10.1097/00002826-200109000-00007, PMID 11586115

Feng LR, Maguire-Zeiss KA. Gene therapy in Parkinson’s disease: Rationale and current status. CNS Drugs 2010;24:177-92. doi: 10.2165/11533740-000000000-00000, PMID 20155994

Feng Y, Liang ZH, Wang T, Qiao X, Liu HJ, Sun SG. Alpha-synuclein redistributed and aggregated in rotenone-induced Parkinson’s disease rats. Neurosci Bull 2006;22:288-93. PMID 17690729

Fowler CJ. Update on the neurology of Parkinson’s disease. Neurourol Urodyn 2007;26:103-9. doi: 10.1002/nau.20371, PMID 17080417

Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers. J Med Genet 2004;41:937-40. doi: 10.1136/jmg.2004.024455, PMID 15591280

Goldstein DS, Holmes C, Li ST, Bruce S, Metman LV, Cannon RO 3rd. Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 2000;133:338-47. doi: 10.7326/0003-4819-133-5-200009050-00009, PMID 10979878

Graeber MB, Streit WJ. Microglia: Biology and pathology. Acta Neuropathol 2010;119:89-105. doi: 10.1007/s00401-009-0622-0, PMID 20012873

Hallett M. Parkinson’s disease tremor: Pathophysiology. Parkinsonism Relat Disord 2012;18:S85-6. doi: 10.1016/S1353-8020(11)70027-X, PMID 22166464

Halliday G, Lees A, Stern M. Milestones in Parkinson’s disease-clinical and pathologic features. Mov Disord 2011;26:1015-21. doi: 10.1002/ mds.23669, PMID 21626546

Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C. The genetics of Parkinson’s syndromes: A critical review. Curr Opin Genet Dev 2009;19:254-65. doi: 10.1016/j.gde.2009.03.008, PMID 19419854

He D, Huang B, Fu S, Li Y, Ran X, Liu Y, et al. Tubeimoside I protects dopaminergic neurons against inflammation-mediated damage in lipopolysaccharide (LPS) evoked model of Parkinson’s disease in rats. Int J Mol Sci 2018;19:2242. pii: E2242. doi: 10.3390/ijms19082242, PMID 30065205

Sagbo IJ, Van De Venter M, Koekemoer T, Bradley G. In vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evid Based Complement Alternat Med 2018;2018:4170372. doi: 10.1155/2018/4170372, PMID 30108655

Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003;26:3160-7. doi: 10.2337/diacare.26.11.3160, PMID 14578255

O’Sullivan JB, Mahan CM. Criteria for the oral glucose tolerance test in pregnancy. Diabetes 1964;13:278-85. PMID 14166677

Fowlkes JL, Nyman JS, Bunn RC, Jo C, Wahl EC, Liu L, et al. Osteo-promoting effects of insulin-like growth factor I (IGF-I) in a mouse model of Type 1 diabetes. Bone 2013;57:36-40. doi: 10.1016/j. bone.2013.07.017, PMID 23886838

Saha MR, Dey P, Sarkar I, de Sarker D, Haldar B, Chaudhuri TK, et al. Acacia nilotica leaf improves insulin resistance and hyperglycemia associated acute hepatic injury and nephrotoxicity by improving systemic antioxidant status in diabetic mice. J Ethnopharmacol 2018;210:275-86. doi: 10.1016/j.jep.2017.08.036, PMID 28859934

Rahmatullah M, Hossain M, Mahmud A, Sultana N, Rahman SM, Islam MR, et al. Antihyperglycemic and antinociceptive activity evaluation of ‘khoyer’ prepared from boiling the wood of Acacia catechu in water. Afr J Tradit Complement Altern Med 2013;10:1-5. doi: 10.4314/ajtcam.v10i4.1, PMID 24146493

Kunwar RM, Shrestha KP, Bussmann RW. Traditional herbal medicine in Far-west Nepal: A pharmacological appraisal. J Ethnobiol Ethnomed 2010;6:35. doi: 10.1186/1746-4269-6-35, PMID 21144003

Rao PK, Hasan SS, Bhellum BL, Manhas RK. Ethnomedicinal plants of Kathua district, J&K, India. J Ethnopharmacol 2015;171:12-27. doi: 10.1016/j.jep.2015.05.028, PMID 26023030

Kingsley B, Jesuraj SA, Brindha P, Subramoniam A, Atif M. Anti-diabetes activity of Acacia farnesiana (L.) willed in alloxan diabetic rats. Int J Pharmacol Res 2013;5:112-8.

Mukhtar MH, Almalki WH, Azmat A, Raafat Abd MR, Ahmed M. Evaluation of anti-diabetic activity of Acacia tortilis (Forssk.) hayne leaf extract in streptozotocin-induced diabetic rats. Int J Pharmacol 2017;13:438-47. doi: 10.3923/ijp.2017.438.447

Hilmi Y, Abushama MF, Abdalgadir H, Khalid A, Khalid H. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional Sudanese plants with anti-diabetic potential. BMC Complement Altern Med 2014;14:149. doi: 10.1186/1472-6882-14-149, PMID 24885334

Deb J, Dash GK. Review on Acacia ferruginea DC. (Mimosaceae): An endangered medicinal plant. Int J Pharmacol Res 2013;5:1-3.

Vadivel V, Biesalski HK. Total phenolic content, in vitro antioxidant activity and Type II diabetes relevant enzyme inhibition properties of methanolic extract of traditionally processed underutilized food legume, Acacia nilotica (L.) Willd. ex. Delile. Int Food Res J 2012;19:593-601.

Jawla S, Kumar Y, Khan MS. Antimicrobial and antihyperglycemic activities of Acacia modesta leaves. Pharmacologyonline 2011;2:331-47.

Yasir M, Jain P, jyoti D, Kharya MD. Hypoglycemic and antihyperglycemic effect of different extracts of Acacia arabica lamk bark in normal and alloxan induced diabetic rats. Int J Phytomed 2010;2:133-8. doi: 10.5138/ijpm.2010.0975.0185.02021.

Zahidin NS, Saidin S, Zulkifli RM, Muhamad II, Ya’akob H, Nur H. A review of Acalypha indica L. (Euphorbiaceae) as traditional medicinal plant and its therapeutic potential. J Ethnopharmacol 2017;207:146-73. doi: 10.1016/j.jep.2017.06.019, PMID 28647509.

Laitiff AA, Teoh SL, Das S. Wound healing in diabetes mellitus: Traditional treatment modalities. Clin Ter 2010;161:359-64. PMID 20931161.

Ribnicky DM, Poulev A, Watford M, Cefalu WT, Raskin I. Antihyperglycemic activity of Tarralin, an ethanolic extract of Artemisia racunculus L. Phytomedicine 2006;13:550-7. doi: 10.1016/j. phymed.2005.09.007, PMID 16920509.

Kujur RS, Singh V, Ram M, Yadava HN, Singh KK, Kumari S, et al. Antidiabetic activity and phytochemical screening of crude extract of stevia rebaudiana in alloxan-induced diabetic rats. Pharmacogn Res 2010;2:258-63. doi: 10.4103/0974-8490.69128, PMID 21808578.

Yang M, Xie J, Lei X, Song Z, Gong Y, Liu H et al. Tubeimoside I suppresses diabetes induced bone loss in rats, osteoclast formation, and RANKL induced nuclear factor-κB pathway. Int Immunopharmacol 2020;80:106202. doi: 10.1016/j.intimp.2020.106202, PMID 32004923.

Rao MR, Adagale UR, Shetty A, Namjoshi P, Gaitonde P, Jain P. Cancer Immunotherapy; 2007. Available from: https://www.pharmainfo.net/ reviews/cancer-immunotherapy

Park SU. Anticancer compounds from plants. Excli J 2012;11:386-9. PMID 27231469.

Mubeen M, Kini SG. A review on the design and development of EGFR tyrosine kinase inhibitors in cancer therapy. Int J Ther Appl 2012;5:29-37.

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. A Cancer J Clin 2011;61:69-90.

Waks AG, Winer EP. Breast cancer treatment: A review. JAMA 2019;321:288-300. doi: 10.1001/jama.2018.19323, PMID 30667505

Lyons TG. Targeted therapies for triple-negative breast cancer. Curr Treat Options Oncol 2019;20:82. doi: 10.1007/s11864-019-0682-x, PMID 31754897

Blackley EF, Loi S. Targeting immune pathways in breast cancer: Review of the prognostic utility of TILs in early stage triple negative breast cancer (TNBC). Breast 2019;48:S44-8. doi: 10.1016/S0960- 9776(19)31122-1, PMID 31839159

Eisenberg DM, Davis RB, Ettner SL, Appel S, Wilkey S, Van Rompay M, et al. Trends in alternative medicine in the United States, 1990-1997. JAMA 1998;280:1569-75. doi: 10.1001/jama.280.18.1569, PMID 9820257

Eisenberg DM, Kessler RC, Foster C, Norlock FE, Calkins DR, Delbanco TL. Unconventional medicine in the United States: Prevalence, cost and patterns of use. N Engl J Med 1993;328:246-52. doi: 10.1056/NEJM199301283280406, PMID 8418405

Montbriand MJ. Freedom of choice: An issue concerning alternate therapies chosen by cancer patients. Oncol Nurs Forum 1993;20:1195- 201. PMID 8415148

Montbriand MJ. Decision Heuristics of Patients with Cancer: Alternate and Biomedical Choices [Doctoral Dissertation]. Saskatoon, Saskatchewan, Canada: College of Medicine, University of Saskatchewan; 1994a.

Montbriand MJ. An overview of alternate therapies chosen by patients with cancer. Oncol Nurs Forum 1994b;21:1547-54. PMID 7816680

Montbriand MJ. Alternative therapies as control behaviors used by cancer patients. J Adv Nurs 1995a;22:646-54. doi: 10.1046/j.1365- 2648.1995.22040646.x, PMID 8708182

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020;83:770-803. doi: 10.1021/acs.jnatprod.9b01285, PMID 32162523

Huang MY, Zhang LL, Ding J, Lu JJ. Anticancer drug discovery from Chinese medicinal herbs. Chin Med 2018;13:35. doi: 10.1186/s13020- 018-0192-y, PMID 29997684

Berdy J. Are actinomycetes exhausted as a source of secondary metabolites? Biotechnologia 1995;7-8:13-34.

Mendelsohn R, Balick MJ. The value of undiscovered pharmaceuticals in tropical forests. Econ Bot 1995;49:223-8. doi: 10.1007/BF02862929

Henkel T, Brunne RM, Müller H, Reichel F. Statistical investigation into structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed Engl 1999;38:643-7. doi: 10.1002/ (SICI)1521-3773(19990301)38:5<643:AID-ANIE643>3.0.CO;2-G, PMID 29711552

Lopes CM, Dourado A, Oliveira R. Phytotherapy and nutritional supplements on breast cancer. BioMed Res Int 2017;2017:7207983. doi: 10.1155/2017/7207983, PMID 28845434

Hao W, Wang S, Zhou Z. Tubeimoside-1 (TBMS1) inhibits lung cancer cell growth and induces cells apoptosis through activation of MAPK-JNK pathway. Int J Clin Exp Pathol 2015;8:12075-83. PMID 26722392

Shi H, Bi H, Sun X, Dong H, Jiang Y, Mu H, et al. Tubeimoside-1 inhibits the proliferation and metastasis by promoting miR-126-5p expression in non-small cell lung cancer cells. Oncol Lett 2018;16:3126-34. doi: 10.3892/ol.2018.9051, PMID 30127904

Feng X, Zhou J, Li J, Hou X, Li L, Chen Y, et al. Tubeimoside I induces accumulation of impaired autophagolysosome against cervical cancer cells by both initiating autophagy and inhibiting lysosomal function. Cell Death Dis 2018;9:1117. doi: 10.1038/s41419-018-1151-3, PMID 30389907

Gong X, Sun R, Gao Z, Han W, Liu Y, Zhao L, et al. Tubeimoside-1 acts as a chemotherapeutic synergist via stimulating macropinocytosis. Front Pharmacol 2018;9:1044. doi: 10.3389/fphar.2018.01044, PMID 30319403

Jiang SL, Guan YD, Chen XS, Ge P, Wang XL, Lao YZ, et al. Tubeimoside-1, a triterpenoid saponin, induces cytoprotective autophagy in human breast cancer cells in vitro via Akt-mediated pathway. Acta Pharmacol Sin 2019;40:919-28. doi: 10.1038/s41401- 018-0165-9, PMID 30315250

Yin Y, Chen W, Tang C, Ding H, Jang J, Weng M, et al. NF-κB, JNK and p53 pathways are involved in tubeimoside-1-induced apoptosis in HepG2 cells with oxidative stress and G2/M cell cycle arrest. Food Chem Toxicol 2011;49:3046-54. doi: 10.1016/j.fct.2011.10.001, PMID 22005259

Lin X, Li W, Ye C, Liu X, Zhu H, Peng W, et al. Research on the interaction between tubeimoside 1 and HepG2 cells using the microscopic imaging and fluorescent spectra method. Comput Math Methods Med 2014;2014:470452. doi: 10.1155/2014/470452, PMID 24963337

Peng Y, Zhong Y, Li G. Tubeimoside-1 suppresses breast cancer metastasis through downregulation of CXCR4 chemokine receptor expression [BMB rep]. BMB Rep 2016;49:502-7. doi: 10.5483/ bmbrep.2016.49.9.030, PMID 27157541

Chen D, Cao R, He J, Guo Y, Wang L, Ji W, et al. Synergetic effects of aqueous extracts of Fuzi (Radix Aconiti Lateralis Preparata) and Tubeimu (Rhizoma bolbostemmatis) on MDA-MB-231 and SKBR3 cells. J Tradit Chin Med 2016;36:113-24. doi: 10.1016/s0254- 6272(16)30017-6, PMID 26946628

Bian Q, Liu P, Gu J, Song B. Tubeimoside-1 inhibits the growth and invasion of colorectal cancer cells through the Wnt/β-catenin signaling pathway. Int J Clin Exp Pathol 2015;8:12517-24. PMID 26722439

Gu Y, Körbel C, Scheuer C, Nenicu A, Menger MD, Laschke MW. Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model. Oncotarget 2016;7:5258-72. doi: 10.18632/ oncotarget.6676, PMID 26701724

Lin Y, Xie G, Xia J, Su D, Liu J, Jiang F, et al. TBMS1 exerts its cytotoxicity in NCI-H460 lung cancer cells through nucleolar stress-induced p53/MDM2-dependent mechanism, a quantitative proteomics study. Biochim Biophys Acta 2016;1864:204-10. doi: 10.1016/j. bbapap.2015.11.001, PMID 26549658

Xu Y, Wang G, Chen Q, Lin T, Zeng Z, Luo Q, et al. Intrinsic apoptotic pathway and G2/M cell cycle arrest involved in tubeimoside I-induced EC109 cell death. Chin J Cancer Res 2013;25:312-21. doi: 10.3978/j. issn.1000-9604.2013.06.03, PMID 23825908

Wu T, Cui H, Xu Y, Du Q, Zhao E, Cao J, et al. The effect of tubeimoside-1 on the proliferation, metastasis and apoptosis of oral squamous cell carcinoma in vitro. Onco Targets Ther 2018;11:3989- 4000. doi: 10.2147/OTT.S164503, PMID 30022842

Zhang Y, Xu XM, Zhang M, Qu D, Niu HY, Bai X, et al. Effects of tubeimoside-1 on the proliferation and apoptosis of BGC823 gastric cancer cells in vitro. Oncol Lett 2013;5:801-4. doi: 10.3892/ ol.2013.1117, PMID 23425861

Chen WJ, Yu C, Yang Z, He JL, Yin J, Liu HZ, et al. Tubeimoside-1 induces G2/M phase arrest and apoptosis in SKOV-3 cells through increase of intracellular Ca²+ and caspase-dependent signaling pathways. Int J Oncol 2012;40:535-43. doi: 10.3892/ijo.2011.1218, PMID 21971569

Liu HZ, Yu C, Yang Z, He JL, Chen WJ, Yin J, et al. Tubeimoside I sensitizes cisplatin in cisplatin-resistant human ovarian cancer cells (A2780/DDP) through down-regulation of ERK and up-regulation of p38 signaling pathways. Mol Med Rep 2011;4:985-92. doi: 10.3892/ mmr.2011.513, PMID 21687949

Huang P, Yu C, Liu XQ, Ding YB, Wang YX, He JL. Cytotoxicity of tubeimoside I in human choriocarcinoma JEG-3 cells by induction of cytochrome c release and apoptosis via the mitochondrial-related signaling pathway. Int J Mol Med 2011;28:579-87. doi: 10.3892/ ijmm.2011.727, PMID 21687933

Wang Y, Deng L, Zhong H, Wang Y, Jiang X, Chen J. Natural plant extract tubeimoside I promotes apoptosis-mediated cell death in cultured human hepatoma (HepG2) cells. Biol Pharm Bull 2011;34:831-8. doi: 10.1248/bpb.34.831, PMID 21628880

Weng XY, Ma RD, Yu LJ. Apoptosis of human nasopharyngeal carcinoma CNE-2Z cells induced by tubeimoside I. Ai Zheng 2003;22:806-11. PMID 12917024

Rasul A, Song R, Wei W, Nishino Y, Tsuji I, Li X, et al. Tubeimoside-1 inhibits growth via the induction of cell cycle arrest and apoptosis in human melanoma A375 cells. Bangladesh J Pharmacol 2012;7:150-6. doi: 10.3329/bjp.v7i3.11507

Rasul A, Shen X, Wang B, Liu B, Li X, Tang J. Tubeimoside-1 up-regulates p21 expression and induces apoptosis and G2/M phase cell cycle arrest in human bladder cancer T24 cells. Bangladesh J Pharmacol 2014;9:19989. doi: 10.3329/bjp.v9i4.19989

Xu Y, Ching YP, Zhou Y, Chiu JF, Chen F, He QY. Multiple pathways were involved in tubeimoside-1-induced cytotoxicity of HeLa cells. J Proteomics 2011;75:491-501. doi: 10.1016/j.jprot.2011.08.014, PMID 21903181

Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014;6:4095-139. doi: 10.3390/ v6104095. - DOI - PMC - PubMed. PMID 25341668

Gaitán-Cepeda LA, Sánchez-Vargas O, Castillo N. Prevalence of oral candidiasis in HIV/AIDS children in highly active antiretroviral therapy era. A literature analysis. Int J STD AIDS 2015;26:625-32. doi: 10.1177/0956462414548906, PMID 25156369

Konoshima T, Yasuda I, Kashiwada Y, Cosentino LM, Lee KH. Anti-AIDS agents, 21. triterpenoid saponins as anti-HIV principles from fruits of Gleditsia japonica and Gymnocladus chinensis, and a structure-activity correlation. J Nat Prod 1995;58:1372-7. doi: 10.1021/np50123a006, PMID 7494144

Yu LJ, Ma RD, Jiang SB. Effects of tubeimoside-1 on HIV core protein p24 and cytopathogenesis in vitro. Zhongguo Yao Li Xue Bao 1994;15:103-6. PMID 8010099

Xu Y, Chiu JF, He QY, Chen F. Tubeimoside-1 exerts cytotoxicity in HeLa cells through mitochondrial dysfunction and endoplasmic reticulum stress pathways. J Proteome Res 2009;8:1585-93. doi: 10.1021/pr801001j, PMID 19215086

Jia G, Wang Q, Wang R, Deng D, Xue L, Shao N, et al. Tubeimoside-1 induces glioma apoptosis through regulation of Bax/Bcl-2 and the ROS/cytochrome C/caspase-3 pathway. Onco Targets Ther 2015;8:303-11. doi: 10.2147/OTT.S76063, PMID 25674005

Yan J, Dou X, Zhou J, Xiong Y, Mo L, Li L, et al. Tubeimoside-I sensitizes colorectal cancer cells to chemotherapy by inducing ROS-mediated impaired autophagolysosomes accumulation. J Exp Clin Cancer Res 2019;38:353. doi: 10.1186/s13046-019-1355-0, PMID 31412953

Chen L, Weng Q, Li F, Liu J, Zhang X, Zhou Y. Pharmacokinetics and bioavailability study of tubeimoside I in ICR mice by UPLC-MS/MS. J Anal Methods Chem 2018;2018:9074893. doi: 10.1155/2018/9074893, PMID 30116651

Published

07-09-2022

How to Cite

SOROMOU, L. W., and M. FODÉ CAMARA. “TUBEIMOSIDE-1, A TRITERPENOID SAPONIN: AN UPDATE ON ITS PHARMACOLOGICAL EFFECTS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 15, no. 9, Sept. 2022, pp. 8-14, doi:10.22159/ajpcr.2022.v15i9.45291.

Issue

Section

Review Article(s)