VIRTUAL SCREENING OF THE ZIMBABWE NATURAL PRODUCT DATABASE FOR GLUCOKINASE ACTIVATORS

Authors

  • EZEKIEL MAKAMBWA Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
  • MASTERIA YUNOVILSA PUTRA National Metabolomics Collaborative Research Centre, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
  • ADHA DHASTU ILLAHI Department of Pharmaceutical Chemistry, Pharmacy, Sekolah Tinggi Ilmu Kesehatan Salsabila Serang, Indonesia
  • MUHAMMAD ADIL KHAN Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, West Jawa, Indonesia.
  • ARRY YANUAR Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia

DOI:

https://doi.org/10.22159/ajpcr.2025v18i1.53258

Keywords:

Diabetes mellitus, Glucokinase, Molecular docking, Molecular dynamicsv, Natural products, Pharmacophore modeling, Virtual screening, Zimbabwe

Abstract

Objective: This study aimed to identify potential glucokinase activators within Zimbabwean natural products using virtual screening techniques.

Methods: Twenty-one compounds filtered from ChEMBL ID 3820 (pEC50 ≥ 8) were used to generate a pharmacophore model, validated with DUD-E data. The model screened the 6220 compounds in the Zimbabwe Natural Products Database (ZiNaPoD) using LigandScout. Hit compounds were docked with glucokinase (protein ID 4NO7) using AutoDock Vina and AutoDock 4 in PyRx, followed by adsorption, distribution, metabolism, and excretion (ADME) screening by SwissADME. Molecular dynamics simulations were conducted on the resulting complexes using the CHARMM36m force field on GROMACS.

Results: The validated pharmacophore model (80% accuracy, 95% sensitivity, 80% specificity) produced 149 hits, 16 of which had binding energies ≤ −8 kcal/mol after the two rounds of molecular docking. The ADME analysis narrowed the selection to four compounds, with binding energies ranging from −8.35 to −9.82 kcal/mol. All four demonstrated stability in molecular dynamic simulations, with average root mean square deviation (RMSD) values ranging from 1.491 to 3.835 Å. The Sphenostylisin I and Dihydroxymethyl dihydroxybenzyl chromanone (DMDBC) complexes exhibited the highest stability with average RMSD values of 1.491±2.794 Å and 2.875±1.452 Å, respectively. They also exhibited low-binding free energies of −30.30±0.38 and −30.20±0.49 kcal/mol, making them promising targets.

Conclusion: Four potential glucokinase activators were identified, with Sphenostylisin I and DMDBC showing promise as candidates for developing new diabetes treatments due to their stability, favorable binding, and absence of liver-toxic groups.

Downloads

Download data is not yet available.

References

Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, et al. Profiling the antidiabetic potential of compounds identified from fractionated extracts of Entada africana toward glucokinase stimulation: Computational insight. Molecules. 2023;28(15):5752. doi: 10.3390/molecules28155752, PMID: 37570723

Dahlén AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, et al. Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front Pharmacol. 2022;12:807548. doi: 10.3389/fphar.2021.807548, PMID: 35126141

Usai R, Majoni S, Rwere F. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review. Front Pharmacol. 2022;13:980819. doi: 10.3389/fphar.2022.980819, PMID: 36091798

Mutowo M, Gowda U, Mangwiro JC, Lorgelly P, Owen A, Renzaho A. Prevalence of diabetes in Zimbabwe: A systematic review with meta-analysis. Int J Public Health. 2015;60(1):1-11. doi: 10.1007/s00038- 014-0626-y, PMID: 25432797

Edelman SV, Polonsky WH. Type 2 diabetes in the real world: The elusive nature of glycemic control. Diabetes Care. 2017;40(11):1425-32. doi: 10.2337/dc16-1974, PMID: 28801473

Louie JZ, Shiffman D, Rowland CM, Kenyon NS, Bernal-Mizrachi E, McPhaul MJ, et al. Predictors of lack of glycemic control in persons with type 2 diabetes. Clin Diabetes Endocrinol. 2024;10(1):2. doi: 10.1186/ s40842-023-00160-7, PMID: 38267992

Thilagavathi R, Hosseini‐Zare MS, Malini M, Selvam C. A comprehensive review on glucokinase activators: Promising agents for the treatment of type 2 diabetes. Chem Biol Drug Des. 2022;99(2):247-63. doi: 10.1111/cbdd.13979, PMID: 34714587

Ren Y, Li L, Wan L, Huang Y, Cao S. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. J Enzyme Inhib Med Chem. 2022;37(1):606-15. doi: 10.1080/14756366.2021.2025362, PMID: 35067153

Sharma P, Singh S, Sharma N, Singla D, Guarve K, Grewal AS. Targeting human Glucokinase for the treatment of type 2 diabetes: An overview of allosteric Glucokinase activators. J Diabetes Metab Disord. 2022;21(1):1129-37. doi: 10.1007/s40200-022-01019-x, PMID: 35673438

Taha MO, Habash M, Khanfar MA. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators. J Comput Aided Mol Des. 2014;28(5):509-47. doi: 10.1007/ s10822-014-9740-4, PMID: 24610240

Li P, Zhu D. Clinical investigation of glucokinase activators for the restoration of glucose homeostasis in diabetes. J Diabetes. 2024;16(5):e13544. doi: 10.1111/1753-0407.13544, PMID: 38664885

Yadav S, Bharti S, Mathur P. GlucoKinaseDB: A comprehensive, curated resource of glucokinase modulators for clinical and molecular research. Comput Biol Chem. 2023;103:107818. doi: 10.1016/j. compbiolchem.2023.107818, PMID: 36680885

Sharma S, Wadhwa K, Choudhary M, Budhwar V. Ethnopharmacological perspectives of Glucokinase activators in the treatment of diabetes mellitus. Nat Prod Res. 2022;36(11):2962-76. doi: 10.1080/14786419.2021.1931187, PMID: 34044681

Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49(W1):W530-4. doi: 10.1093/nar/gkab294, PMID: 33950214

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12. doi: 10.1002/jcc.20084, PMID: 15264254

Petit P, Antoine M, Ferry G, Boutin JA, Lagarde A, Gluais L, et al. The active conformation of human Glucokinase is not altered by allosteric activators. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 11):929-35. doi: 10.1107/s0907444911036729, PMID: 22101819

Krivák R, Hoksza D. P2Rank: Machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Cheminform. 2018;10(1):39. doi: 10.1186/s13321-018-0285-8

Ali A. Development of antidiabetic drugs from benzamide derivatives as Glucokinase activator: A computational approach. Saudi J Biol Sci. 2022;29(5):3313-25. doi: 10.1016/j.sjbs.2022.01.058, PMID: 35844378

Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11(5):905-19. doi: 10.1038/ nprot.2016.051, PMID: 27077332

Hill AD, Reilly PJ. Scoring functions for AutoDock. Methods Mol Biol. 2015;1273:467-74. doi: 10.1007/978-1-4939-2343-4_27, PMID: 25753725

Morris GM, Lim-Wilby M. Molecular docking. Methods Mol

Biol. 2008;443:365-82. doi: 10.1007/978-1-59745-177-2_19, PMID: 18446297

Bell EW, Zhang Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J Cheminform. 2019;11(1):40. doi: 10.1186/s13321-019- 0362-7

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717, PMID: 28256516

Michiba K, Watanabe K, Imaoka T, Nakai D. Recent advances in the gastrointestinal complex in vitro Model for ADME studies. Pharmaceutics. 2023;16(1):37. doi: 10.3390/pharmaceutics16010037, PMID: 38258048

Mora Lagares L, Minovski N, Novič M. Multiclass classifier for P-glycoprotein substrates, inhibitors, and non-active compounds. Molecules. 2019;24(10):2006. doi: 10.3390/molecules24102006, PMID: 31130601

Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: An update. Arch Toxicol. 2020;94(11):3671-722. doi: 10.1007/s00204-020-02936-7, PMID: 33111191

Pinal R. Enhancing the bioavailability of poorly soluble drugs. Pharmaceutics. 2024;16(6):758. doi: 10.3390/pharmaceutics16060758, PMID: 38931880

Tsopelas F, Giaginis C, Tsantili-Kakoulidou A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin Drug Discov. 2017;12(9):885-96. doi: 10.1080/17460441.2017.1344210, PMID: 28644732

Lemkul JA. Introductory tutorials for simulating protein dynamics with GROMACS. J Phys Chem B. 2024;128(39):9418-35. doi: 10.1021/acs. jpcb.4c04901, PMID: 39305267

Jo S, Kim T, Iyer VG, Im W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM. J Comput Chem. 2008;29(11):1859-65. doi: 10.1002/jcc.20945, PMID: 18351591

Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput. 2016;12(1):405-13. doi: 10.1021/acs.jctc.5b00935

Miller BR 3rd, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: An efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8(9):3314-21. doi: 10.1021/ct300418h, PMID: 26605738

Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput. 2021;17(10):6281-91. doi: 10.1021/acs.jctc.1c00645, PMID: 34586825

Khamlich J, Douiyeh I, Saih A, Moussamih S, Regragui A, Kettani A, et al. Identification of small molecule Glucokinase activators for the treatment of diabetes based on plants from the traditional Chinese medicine: In silico analysis. Microb Pathog. 2024;195:106851. doi: 10.1016/j.micpath.2024.106851, PMID: 39197693

Min Q, Cai X, Sun W, Gao F, Li Z, Zhang Q, et al. Identification of mangiferin as a potential Glucokinase activator by structure-based virtual ligand screening. Sci Rep. 2017;7(1):44681. doi: 10.1038/ srep44681, PMID: 28317897

Zhi J, Zhai S. Effects of piragliatin, a Glucokinase activator, on fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus. J Clin Pharmacol. 2016;56(2):231-8. doi: 10.1002/jcph.589, PMID: 26183686

Anderson A. Final Report on the safety assessment of benzaldehyde. Int J Toxicol. 2006;25(Suppl 1):11-27. doi: 10.1080/10915810600716612, PMID: 16835129

Melo MG, dos Santos JP, Serafini MR, Caregnato FF, de Bittencourt Pasquali MA, Rabelo TK, et al. Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro. 2011;25(2):462-8. doi: 10.1016/j.tiv.2010.11.014, PMID: 21111802

Kamle M, Pandhi S, Mishra S, Barua S, Kurian A, Mahato DK, et al. Camptothecin and its derivatives: Advancements, mechanisms and clinical potential in cancer therapy. Med Oncol. 2024;41(11):263. doi: 10.1007/s12032-024-02527-x, PMID: 39382779

Hegab MI. A review on chemical and biological studies of 4-chromanone derivatives. Russ J Organ Chem. 2023;59(3):483-97. doi: 10.1134/ S107042802303017X

Park JE, Han JS. HM-chromanone suppresses hepatic glucose production via activation of AMP-activated protein kinase in HepG2 cell. Eur J Pharmacol. 2022;928:175108. doi: 10.1016/j.ejphar.2022.175108, PMID: 35718128

Cheng JL, He XR, Wang ZC, Zhang JG, Zhao JH, Zhu GN. Metabolism-based synthesis, biological evaluation and structure-activity relationship analysis of spirotetramat analogues as potential lipid biosynthesis inhibitors. Pest Manag Sci. 2013;69(10):1121-30. doi: 10.1002/ps.3473, PMID: 23436572

Li J, Pan L, Deng Y, Muñoz-Acuña U, Yuan C, Lai H, et al. Sphenostylisins A-K: Bioactive modified isoflavonoid constituents of the root bark of Sphenostylis marginata ssp. Erecta. J Org Chem. 2013;78(20):10166-77. doi: 10.1021/jo401573h

Li X, Wang D, Xia MY, Wang ZH, Wang WN, Cui Z. Cytotoxic prenylated flavonoids from the stem bark of Maackia amurensis. Chem Pharm Bull (Tokyo). 2009;57(3):302-6. doi: 10.1248/cpb.57.302, PMID: 19252325

Nahir CF, Putra MY, Wibowo JT, Lee VS, Yanuar A. The potential of Indonesian marine natural product with dual targeting activity through SARS-COV-2 3CLPRO and PLPRO: An in silico studies. Int J Appl Pharm. 2023;15(5):171-80. doi: 10.22159/ijap.2023v15i5.48416

Damghani T, Sedghamiz T, Sharifi S, Pirhadi S. Critical c-Met-inhibitor interactions resolved from molecular dynamics simulations of different c-Met complexes. J Mol Struct. 2020;1203:127456. doi: 10.1016/j. molstruc.2019.127456

Lobanov MY, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of protein structure compactness. Mol Biol. 2008;42(4):623-8. doi: 10.1134/S0026893308040195

Al-Khafaji K, Taskin Tok T. Molecular dynamics simulation, free energy landscape and binding free energy computations in exploration the anti-invasive activity of amygdalin against metastasis. Comput Methods Programs Biomed. 2020;195:105660. doi: 10.1016/j. cmpb.2020.105660, PMID: 32726718

Wang C, Greene D, Xiao L, Qi R, Luo R. Recent developments and applications of the MMPBSA method. Front Mol Biosci. 2018;4:87. doi: 10.3389/fmolb.2017.00087, PMID: 29367919

Sahakyan H. Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. J Comput Aided Mol Des. 2021;35(6):731-6. doi: 10.1007/s10822-021-00389-3, PMID: 33983518

Published

07-01-2025

How to Cite

EZEKIEL MAKAMBWA, MASTERIA YUNOVILSA PUTRA, ADHA DHASTU ILLAHI, MUHAMMAD ADIL KHAN, and ARRY YANUAR. “VIRTUAL SCREENING OF THE ZIMBABWE NATURAL PRODUCT DATABASE FOR GLUCOKINASE ACTIVATORS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 1, Jan. 2025, pp. 56-67, doi:10.22159/ajpcr.2025v18i1.53258.

Issue

Section

Original Article(s)