NANOTECHNOLOGY-DRIVEN THERAPEUTICS FOR LIVER CANCER: CLINICAL APPLICATIONS AND PHARMACEUTICAL INSIGHTS

Authors

  • LOKESHVAR RAVIKUMAR Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
  • RAMAIYAN VELMURUGAN Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
  • NITHIN VIDIYALA Cerevel Therapeutics, Boston, Massachusetts.
  • PAVANI SUNKISHALA Senior Validation Specialist at PCI Pharma Services, Bedford, New Hampshire
  • VINOD KUMAR TERIVEEDHI Department of R&D, Hikma Pharmaceuticals, USA

DOI:

https://doi.org/10.22159/ajpcr.2025v18i2.53429

Keywords:

Hepatocellular carcinoma, Nanomedicine, Targeted drug delivery, Therapeutic nanoparticles, Liver cancer treatment, Diagnostic biosensors

Abstract

Hepatocellular carcinoma (HCC) represents a significant threat to global health and is responsible for significant mortality rates worldwide. Conventional treatment options such as surgery and chemotherapy have inherent limitations. In order to remedy these deficits, the development of novel therapeutic strategies is essential. Nanomedicines have shown promise in HCC treatment as they offer improved stability, controlled release, and increased drug loading capacity. This review explores the application of nanoconstructs in HCC treatment, including active and passive targeting strategies. In addition, liver cell targeting approaches, targeting moieties, and conjugation chemistry for surface functionalization are investigated. A compact overview of various therapeutic approaches to HCC treatment is also given.

Downloads

Download data is not yet available.

References

Cornu R, Béduneau A, Martin H. Influence of nanoparticles on liver tissue and hepatic functions: A review. Toxicology. 2020 Jan 30;430:152344. doi: 10.1016/j.tox.2019.152344, PMID 31843632

Böttger R, Pauli G, Chao PH, Al Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev. 2020;154-5:79-101. doi: 10.1016/j.addr.2020.06.017, PMID 32574575

Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 2020 Jun 10;25(11):2692. doi: 10.3390/molecules25112692, PMID 32532030

Tajiri K, Shimizu Y. Liver physiology and liver diseases in the elderly. World J Gastroenterol. 2013 Dec 14;19(46):8459-67. doi: 10.3748/wjg. v19.i46.8459, PMID 24379563

Van der Heide D, Weiskirchen R, Bansal R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Front Immunol. 2019 Dec 3;10:2852. doi: 10.3389/fimmu.2019.02852, PMID 31849997

Baig B, Halim SA, Farrukh A, Greish Y, Amin A. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed Pharmacother. 2019 Aug;116:108852. doi: 10.1016/j. biopha.2019.108852, PMID 30999152

Usmani A, Mishra A, Ahmad M. Nanomedicines: A theranostic approach for hepatocellular carcinoma. Artif Cells Nanomed Biotechnol. 2018 Jun;46(4):680- 90. doi: 10.1080/21691401.2017.1374282, PMID 28884605

Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, et al. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther. 2024 Aug 12;9(1):200. doi: 10.1038/ s41392-024-01889-y, PMID 39128942

Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019 Aug;71(8):1185- 98. doi: 10.1111/jphp.13098, PMID 31049986

Gajbhiye KR, Chaudhari BP, Pokharkar VB, Pawar A, Gajbhiye V. Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. Int J Pharm. 2020 Oct 15;588:119781. doi: 10.1016/j.ijpharm.2020.119781, PMID 32822781

Poelstra K, Schuppan D. Targeted therapy of liver fibrosis/cirrhosis and its complications. J Hepatol. 2011 Sep;55(3):726-8. doi: 10.1016/j. jhep.2011.04.008, PMID 21601600

Hirsjärvi S, Passirani C, Benoit JP. Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol. 2011 Sep;8(3):188-96. doi: 10.2174/157016311796798991, PMID 21513482

Meijer DK, Molema G. Targeting of drugs to the liver. Semin Liver Dis. 1995 Aug;15(3):202-56. doi: 10.1055/s-2007-1007278, PMID 7491504

Shi B, Abrams M, Sepp-Lorenzino L. Expression of asialoglycoprotein receptor 1 in human hepatocellular carcinoma. J Histochem Cytochem. 2013 Dec;61(12):901-9. doi: 10.1369/0022155413503662, PMID 23979840

Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M. Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol. 2014 Jun 21;20(23):7242-51. doi: 10.3748/wjg.v20. i23.7242, PMID 24966595

Sun J, Jiang L, Lin Y, Gerhard EM, Jiang X, Li L, et al. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. Int J Nanomedicine. 2017 Feb 27;12:1517-37. doi: 10.2147/IJN.S122859, PMID 28280323

Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, et al. Targeted drug delivery systems for curcumin in breast cancer therapy. Int J Nanomedicine. 2023 Jul 28;18:4275-311. doi: 10.2147/IJN.S410688, PMID 37534056

Julyan PJ, Seymour LW, Ferry DR, Daryani S, Boivin CM, Doran J, et al. Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J Control Release. 1999 Feb 22;57(3):281- 90. doi: 10.1016/s0168-3659(98)00124-2, PMID 9895415

Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: Phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002 Mar 15;20(6):1668-76. doi: 10.1200/JCO.2002.20.6.1668, PMID 11896118

Hyodo I, Mizuno M, Yamada G, Tsuji T. Distribution of asialoglycoprotein receptor in human hepatocellular carcinoma. Liver. 1993 Apr;13(2):80-5. doi: 10.1111/j.1600-0676.1993.tb00611.x, PMID 8389955

Trerè D, Fiume L, De Giorgi LB, Di Stefano G, Migaldi M, Derenzini M. The asialoglycoprotein receptor in human hepatocellular carcinomas: Its expression on proliferating cells. Br J Cancer. 1999 Oct;81(3):404-8. doi: 10.1038/sj.bjc.6690708, PMID 10507763

Waller LP, Deshpande V, Pyrsopoulos N. Hepatocellular carcinoma: A comprehensive review. World J Hepatol. 2015 Nov 18;7(26):2648- 63. doi: 10.4254/wjh.v7.i26.2648, PMID 26609342

Devaraji M, Thanikachalam PV, Elumalai K. The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review. Biotechnol Notes. 2024 Jun 5;5:80-99. doi: 10.1016/j. biotno.2024.06.001, PMID 39416693

Karunakar KK, Cheriyan BV, Krithikeshvaran R, Gnanisha M, Abinavi B. Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles. Biotechnol Notes. 2024 Jun 1;5:64-79. doi: 10.1016/j.biotno.2024.05.002, PMID 39416696

Karunakar KK, Edwin ER, Gopalakrishnan M, Cheriyan BV, Ramaiyan V, Karthikha VS, et al. Advances in nephroprotection: The therapeutic role of selenium, silver, and gold nanoparticles in renal health. Int Urol Nephrol. 2025 Feb;57(2):479-510. doi: 10.1007/s11255-024-04212-4. PMID: 39312019

Zhou H, Ge J, Miao Q, Zhu R, Wen L, Zeng J, et al. Biodegradable inorganic nanoparticles for cancer theranostics: Insights into the degradation behavior. Bioconjug Chem. 2020 Feb 19;31(2):315-31. doi: 10.1021/acs.bioconjchem.9b00699, PMID 31765561

Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer. 2021 Dec;1876(2):188621. doi: 10.1016/j.bbcan.2021.188621. PMID 34454983

Dahoumane SA, Jeffryes C, Mechouet M, Agathos SN. Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Bioengineering (Basel). 2017 Feb 18;4(1):14. doi: 10.3390/bioengineering4010014, PMID 28952493

Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm. 2019 Jan 7;16(1):1-23. doi: 10.1021/acs.molpharmaceut.8b00810, PMID 30452861

Khoshnevisan K, Daneshpour M, Barkhi M, Gholami M, Samadian H, Maleki H. The promising potentials of capped gold nanoparticles for drug delivery systems. J Drug Target. 2018 Aug;26(7):525-32. doi: 10.1080/1061186X.2017.1387790, PMID 28972797

Papasani MR, Wang G, Hill RA. Gold nanoparticles: The importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine. 2012 Aug;8(6):804-14. doi: 10.1016/j. nano.2012.01.008, PMID 22306155

Coelho SC, Rangel M, Pereira MC, Coelho MA, Ivanova G. Structural characterization of functionalized gold nanoparticles for drug delivery in cancer therapy: A NMR based approach. Phys Chem Chem Phys. 2015 Jul 15;17(29):18971-9. doi: 10.1039/c5cp02717a, PMID 26126833

Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomedicine. 2020 Dec 7;15:9823-57. doi: 10.2147/IJN.S279094, PMID 33324054

Kumar A, Zhang X, Liang XJ. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013 Sep-Oct;31(5):593-606. doi: 10.1016/j.biotechadv.2012.10.002, PMID 23111203

Milan J, Niemczyk K, Kus-Liśkiewicz M. Treasure on the earth-gold nanoparticles and their biomedical applications. Materials (Basel). 2022 May 7;15(9):3355. doi: 10.3390/ma15093355, PMID 35591689

Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel). 2018 Aug 31;8(9):681. doi: 10.3390/nano8090681, PMID 30200373

Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol. 2018;46(Supp 1):1210-20. doi: 10.1080/21691401.2018.1449118, PMID 29533101

Rai M, Ingle AP, Trzcińska-Wencel J, Wypij M, Bonde S, Yadav A, et al. Biogenic silver nanoparticles: What we know and what do weneed to know? Nanomaterials (Basel). 2021 Oct 29;11(11):2901. doi: 10.3390/nano11112901, PMID 34835665

Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46(Supp 1):115- 26. doi: 10.1080/21691401.2017.1414825, PMID 29231755

Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev. 2017 Aug 14;46(16):4951-75. doi: 10.1039/c7cs00152e, PMID 28696452

Yu S, Yang H. Design principles for the synthesis of platinum-cobalt intermetallic nanoparticles for electrocatalytic applications. Chem Commun (Camb). 2023 Apr 20;59(33):4852-71. doi: 10.1039/ d3cc00590a, PMID 37000696

Fahmy SA, Preis E, Bakowsky U, Azzazy HM. Platinum nanoparticles: Green synthesis and biomedical applications. Molecules. 2020 Oct 28;25(21):4981. doi: 10.3390/molecules25214981, PMID 33126464

Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials (Basel). 2019 Dec 2;9(12):1719. doi: 10.3390/nano9121719, PMID 31810256

Medhat A, Mansour S, El-Sonbaty S, Kandil E, Mahmoud M. Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats. Tumour Biol. 2017 Jul;39(7). doi: 10.1177/1010428317717259, PMID 28720064

Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016 Aug 19;9:49-67. doi: 10.2147/NSA.S99986, PMID 27578966

Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs. 2021 Nov;45(11):1272-99. doi: 10.1111/aor.14027, PMID 34245037

Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008 Oct 2;3(11):397-415. doi: 10.1007/s11671-008-9174-9, PMID 21749733

Malhotra N, Lee JS, Liman RA, Ruallo JM, Villaflores OB, Ger TR, et al. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules. 2020 Jul 10;25(14):3159. doi: 10.3390/molecules25143159, PMID 32664325

Malpani SK, Goyal D. Synthesis, analysis, and multi-faceted applications of solid wastes-derived silica nanoparticles: A comprehensive review (2010-2022). Environ Sci Pollut Res Int. 2023 Mar;30(11):28321-43. doi: 10.1007/s11356-022-23873-1, PMID 36331737

Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig. 2015 Jul- Sep;5(3):124-33. doi: 10.4103/2230-973X.160844, PMID 26258053

Maleki Dizaj S, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin Drug Deliv. 2015;12(10):1649-60. doi: 10.1517/17425247.2015.1049530, PMID 26005036

Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci. 2020 May;279:102157. doi: 10.1016/j.cis.2020.102157, PMID 32330734

Sharma S, Verma A, Teja BV, Pandey G, Mittapelly N, Trivedi R, et al. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids Surf B Biointerfaces. 2015 Sep 1;133:120- 39. doi: 10.1016/j.colsurfb.2015.05.014, PMID 26094145

Khan MW, Zhao P, Khan A, Raza F, Raza SM, Sarfraz M, et al. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomedicine. 2019 May 28;14:3753- 71. doi: 10.2147/IJN.S196651, PMID 31239661

El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco- León A, Prosper F, et al. Lipid nanoparticles for siRNA delivery in cancer treatment. J Control Release. 2023 Sep;361:130-46. doi: 10.1016/j.jconrel.2023.07.054, PMID 37532145

García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, et al. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials (Basel). 2019 Apr 19;9(4):638. doi: 10.3390/nano9040638, PMID 31010180

Birk SE, Boisen A, Nielsen LH. Polymeric nano-and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev. 2021 Jul;174:30-52. doi: 10.1016/j.addr.2021.04.005, PMID 33845040

Moura RP, Pacheco C, Pêgo AP, Des Rieux A, Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J Control Release. 2020 Jun 10;322:390-400. doi: 10.1016/j. jconrel.2020.03.042, PMID 32247807

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013 Feb 22;8(1):102. doi: 10.1186/1556-276X-8-102, PMID 23432972

Rommasi F, Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021 May 25;16(1):95. doi: 10.1186/s11671-021-03553-8, PMID 34032937

Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021 May 15;601:120571. doi: 10.1016/j.ijpharm.2021.120571, PMID 33812967

Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics. 2017 Mar 27;9(2):12. doi: 10.3390/pharmaceutics9020012, PMID 28346375

Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, et al. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021 Sep 9;9:705886. doi: 10.3389/fbioe.2021.705886. Retraction in: Front Bioeng Biotechnol. 2023 Sep 4;11:1285118. doi: 10.3389/fbioe.2023.1285118, PMID 37731758

Wang J, Gong J, Wei Z. Strategies for liposome drug delivery systems to improve tumor treatment efficacy. AAPS PharmSciTech. 2021 Dec 14;23(1):27. doi: 10.1208/s12249-021-02179-4, PMID 34907483

Cannito S, Bincoletto V, Turato C, Pontisso P, Scupoli MT, Ailuno G, et al. Hyaluronated and pegylated liposomes as a potential drug-delivery strategy to specifically target liver cancer and inflammatory cells. Molecules. 2022 Feb 4;27(3):1062. doi: 10.3390/molecules27031062, PMID 35164326

Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V, Abraham MC, et al. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics. 2022 Sep 6;14(9):1886. doi: 10.3390/pharmaceutics14091886, PMID 36145632

Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces. 2020 Dec;196:111305. doi: 10.1016/j. colsurfb.2020.111305, PMID 32795844

Abdel-Mageed HM, Abd El Aziz AE, Mohamed SA, AbuelEzz NZ. The tiny big world of solid lipid nanoparticles and nanostructured lipid carriers: An updated review. J Microencapsul. 2022 Jan;39(1):72-94. doi: 10.1080/02652048.2021.2021307, PMID 34958628

Mirchandani Y, Patravale VB, Brijesh S. Solid lipid nanoparticles for hydrophilic drugs. J Control Release. 2021 Jul 10;335:457-64. doi: 10.1016/j.jconrel.2021.05.032, PMID 34048841

Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, et al. Solid lipid nanoparticles: Emerging colloidal Nano drug delivery systems. Pharmaceutics. 2018 Oct 18;10(4):191. doi: 10.3390/ pharmaceutics10040191, PMID 30340327

Koroleva M, Portnaya I, Mischenko E, Abutbul-Ionita I, Kolik- Shmuel L, Danino D. Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability. J Colloid Interface Sci. 2022 Mar 15;610:61-9. doi: 10.1016/j.jcis.2021.12.010, PMID 34922082

Tunki L, Kulhari H, Vadithe LN, Kuncha M, Bhargava S, Pooja D, et al. Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment. Eur J Pharm Sci. 2019 Sep 1;137:104978. doi: 10.1016/j.ejps.2019.104978, PMID: 31254645

Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig. 2015 Oct- Dec;5(4):182-91. doi: 10.4103/2230-973X.167661, PMID 26682188

Akbari J, Saeedi M, Ahmadi F, Hashemi SM, Babaei A, Yaddollahi S, et al. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol. 2022 Jun;27(5):525-44. doi: 10.1080/10837450.2022.2084554, PMID 35635506

Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018 Jul;103:598-613. doi: 10.1016/j.biopha.2018.04.055, PMID 29677547

Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018 Dec;133:285- 308. doi: 10.1016/j.ejpb.2018.10.017, PMID 30463794

Ghosh S, Tiwari T, Nagaich U, Jain N. A detailed insight into nanostructured lipid carriers: A versatile drug delivery system. Recent Pat Nanotechnol. 2023;17(4):284-306. doi: 10.2174/187221051666622 0523121733, PMID 35616677

Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci. 2018 Aug;13(4):288- 303. doi: 10.4103/1735-5362.235156, PMID 3006576279. Varshosaz J, Hassanzadeh F, Sadeghi H, Khadem M. Galactosylated nanostructured lipid carriers for delivery of 5-FU to hepatocellular carcinoma. J Liposome Res. 2012 Sep;22(3):224-36. doi: 10.3109/08982104.2012.662653, PMID 22385296

Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021 Feb 3;12:601626. doi: 10.3389/fphar.2021.601626, PMID 33613290

Chen C, Yaari Z, Apfelbaum E, Grodzinski P, Shamay Y, Heller DA. Merging data curation and machine learning to improve nanomedicines. Adv Drug Deliv Rev. 2022 Apr;183:114172. doi: 10.1016/j. addr.2022.114172, PMID 35189266

Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020 Aug 15;25(16):3731. doi: 10.3390/ molecules25163731, PMID 32824172

Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem. 2018 Feb 25;146:599- 612. doi: 10.1016/j.ejmech.2018.01.078, PMID 29407984

D’souza AA, Shegokar R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016 Sep;13(9):1257- 75. doi: 10.1080/17425247.2016.1182485, PMID 27116988

Dai J, Dong X, Wang Q, PEG-polymer Lou X, Xia F, Wang S. Encapsulated aggregation-induced emission nanoparticles for tumor theranostics. Adv Healthc Mater. 2021 Dec;10(24):e2101036. doi: 10.1002/adhm.202101036, PMID 34414687

Karakoti AS, Das S, Thevuthasan S, Seal S. Pegylated inorganic nanoparticles. Angew Chem Int Ed Engl. 2011 Feb 25;50(9):1980-94. doi: 10.1002/anie.201002969, PMID 21275011

Devulapally R, Foygel K, Sekar TV, Willmann JK, Paulmurugan R. Gemcitabine and antisense-microRNA co-encapsulated PLGA-PEG polymer nanoparticles for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 2016 Dec 14;8(49):33412-22. doi: 10.1021/ acsami.6b08153, PMID 27960411

Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011 Mar 18;63(3):170-83. doi: 10.1016/j.addr.2010.10.008, PMID 20965219

Cai Q, Wang L, Deng G, Liu J, Chen Q, Chen Z. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am J Transl Res. 2016 Feb 15;8(2):749-64. PMID 27158367

Jain AK, Das M, Swarnakar NK, Jain S. Engineered PLGA nanoparticles: An emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst. 2011;28(1):1-45. doi: 10.1615/critrevtherdrugcarriersyst. v28.i1.10, PMID 21395514

Gao DY, Lin TS, Sung YC, Liu YC, Chiang WH, Chang CC, et al. CXCR4- targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials. 2015 Oct;67:194- 203. doi: 10.1016/j.biomaterials.2015.07.035, PMID 26218745

Jafernik K, Ładniak A, Blicharska E, Czarnek K, Ekiert H, Wiącek AE, et al. Chitosan-based nanoparticles as effective drug delivery systems-a review. Molecules. 2023 Feb 18;28(4):1963. doi: 10.3390/ molecules28041963, PMID 36838951

Faris TM, Harisa GI, Alanazi FK, Samy AM, Nasr FA. Developed simvastatin chitosan nanoparticles co-crosslinked with tripolyphosphate and chondroitin sulfate for ASGPR-mediated targeted HCC delivery with enhanced oral bioavailability. Saudi Pharm J. 2020 Dec;28(12):1851- 67. doi: 10.1016/j.jsps.2020.11.012, PMID 33424274

Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016 Nov;13(11):1609-23. doi: 10.1080/17425247.2016.1193149, PMID 27216915

Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012 Jan 30;157(2):168-82. doi: 10.1016/j.jconrel.2011.07.031, PMID 21839127

Hassanin I, Elzoghby A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug Resist. 2020 Nov 3;3(4):930-46. doi: 10.20517/cdr.2020.68, PMID 35582218

Srivastava A, Prajapati A. Albumin and functionalized albumin nanoparticles: Production strategies, characterization, and target indications. Asian Biomed (Res Rev News). 2020 Dec 31;14(6):217- 42. doi: 10.1515/abm-2020-0032, PMID 37551304

Dayani L, Dehghani M, Aghaei M, Taymouri S, Taheri A. Preparation and evaluation of targeted albumin lipid nanoparticles with lactobionic acid for targeted drug delivery of sorafenib in hepatocellular carcinoma. J Drug Deliv Sci Technol. 2022;69:103142. doi:10.1016/j.jddst.2022.103142

Indech G, Geri L, Mordechai C, Ben Moshe Y, Mastai Y, Shefi O, et al. Controlled synthesis of multifunctional dome-shaped micro-and nano-structures via a robust physical route for biological applications. J Mater Chem B. 2023 Aug 2;11(30):7094-102. doi: 10.1039/d2tb02456j, PMID 37016795

Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review) [review]. Oncol Rep. 2017 Aug;38(2):611-24. doi: 10.3892/or.2017.5718, PMID 28627697

Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent advances in nanomicelles delivery systems. Nanomaterials (Basel). 2020 Dec 30;11(1):70. doi: 10.3390/nano11010070, PMID 33396938

Fu J, Mao Y, Han J, Zhang P, Tan Y, Hu J, et al. A nitric oxide and hydrogen sulfide dual-donating nanosystem for highly synergistic gas-radiotherapy against hepatocellular carcinoma. Biomater Adv. 2023 Jan;144:213209. doi: 10.1016/j.bioadv.2022.213209, PMID 36473350

Basile L, Pignatello R, Passirani C. Active targeting strategies for anticancer drug nanocarriers. Curr Drug Deliv. 2012 May;9(3):255- 68. doi: 10.2174/156720112800389089, PMID 22452402

Shen Z, Wei W, Tanaka H, Kohama K, Ma G, Dobashi T, et al. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol Res. 2011 Oct;64(4):410-9. doi: 10.1016/j. phrs.2011.06.015, PMID 21723392

Pranatharthiharan S, Patel MD, Malshe VC, Pujari V, Gorakshakar A, Madkaikar M, et al. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv. 2017 Nov;24(1):20-9. doi: 10.1080/10717544.2016.1225856, PMID 28155331

Saraswat A, Vemana HP, Dukhande VV, Patel K. Galactose-decorated liver tumor-specific nanoliposomes incorporating selective BRD4-targeted Protac for hepatocellular carcinoma therapy. Heliyon. 2022 Jan 3;8(1):e08702. doi: 10.1016/j.heliyon.2021.e08702, PMID 35036599

Bao QY, Zhang N, Geng DD, Xue JW, Merritt M, Zhang C, et al. The enhanced longevity and liver targetability of paclitaxel by hybrid liposomes encapsulating paclitaxel-conjugated gold nanoparticles. Int J Pharm. 2014 Dec 30;477(1-2):408-15. doi: 10.1016/j. ijpharm.2014.10.040, PMID 25455782

Zhang C, Wang W, Liu T, Wu Y, Guo H, Wang P, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials. 2012 Mar;33(7):2187-96. doi: 10.1016/j.biomaterials.2011.11.045, PMID 22169820

Kim M, Jeong M, Hur S, Cho Y, Park J, Jung H, et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci Adv. 2021 Feb 26;7(9):eabf4398. doi: 10.1126/sciadv.abf4398, PMID 33637537

Mistry NP, Desai JL, Thakkar HP. Formulation and evaluation of tacrolimus-loaded galactosylated poly(lactic-co-glycolic acid) nanoparticles for liver targeting. J Pharm Pharmacol. 2015 Oct;67(10):1337-48. doi: 10.1111/jphp.12430, PMID 25944126

Zheng D, Duan C, Zhang D, Jia L, Liu G, Liu Y, et al. Galactosylated chitosan nanoparticles for hepatocyte-targeted delivery of oridonin. Int J Pharm. 2012 Oct 15;436(1-2):379-86. doi: 10.1016/j. ijpharm.2012.06.039, PMID 22732673

Wang H, Sun S, Zhang Y, Wang J, Zhang S, Yao X, et al. Improved drug targeting to liver tumor by sorafenib-loaded folate-decorated bovine serum albumin nanoparticles. Drug Deliv. 2019 Dec;26(1):89- 97. doi: 10.1080/10717544.2018.1561766, PMID 30744448

Wang Z, Wu P, He Z, He H, Rong W, Li J, et al. Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum(IV) prodrug for liver cancer therapy. J Mater Chem B. 2017 Sep 28;5(36):7591-7. doi: 10.1039/c7tb01704a, PMID 32264234

Fu F, Wu Y, Zhu J, Wen S, Shen M, Shi X. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: Investigating the role played by PEG spacer. ACS Appl Mater Interfaces. 2014 Sep 24;6(18):16416-25. doi: 10.1021/am504849x, PMID 25185074

Dong H, Wu G, Xu H, Zhang C, Wang J, Gao M, et al. N-acetylaminogalactosyl-decorated biodegradable PLGA-TPGS copolymer nanoparticles containing emodin for the active targeting therapy of liver cancer. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 2):260-72. doi: 10.1080/21691401.2018.1455055, PMID 29914275

Chen H, Lin J, Shan Y, Zhengmao L. The promotion of nanoparticle delivery to two populations of gastric cancer stem cells by CD133 and CD44 antibodies. Biomed Pharmacother. 2019 Jul;115:108857. doi: 10.1016/j.biopha.2019.108857, PMID 31048191117. Lai LF, Guo HX. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm. 2011 Feb 14;404(1- 2):317-23. doi: 10.1016/j.ijpharm.2010.11.025, PMID 21094232

Bei YY, Chen XY, Liu Y, Xu JY, Wang WJ, Gu ZL, et al. Novel norcantharidin-loaded liver targeting chitosan nanoparticles to enhance intestinal absorption. Int J Nanomedicine. 2012;7:1819-27. doi: 10.2147/IJN.S29958, PMID 22619530

Lu L, Li B, Lin C, Li K, Liu G, Xia Z, et al. Redox-responsive amphiphilic camptothecin prodrug nanoparticles for targeted liver tumor therapy. J Mater Chem B. 2020 May 6;8(17):3918-28. doi: 10.1039/d0tb00285b, PMID 32227058

Tang S, Li Y. Sorafenib-loaded ligand-functionalized polymer-lipid hybrid nanoparticles for enhanced therapeutic effect against liver cancer. J Nanosci Nanotechnol. 2019 Nov 1;19(11):6866-71. doi: 10.1166/jnn.2019.16936, PMID 31039838

Gupta S, Singh SK, Girotra P. Targeting silymarin for improved hepatoprotective activity through chitosan nanoparticles. Int J Pharm Investig. 2014 Oct;4(4):156-63. doi: 10.4103/2230-973X.143113, PMID 25426436

Moodley T, Singh M. Sterically stabilised polymeric mesoporous silica nanoparticles improve doxorubicin efficiency: Tailored cancer therapy. Molecules. 2020 Feb 8;25(3):742. doi: 10.3390/ molecules25030742, PMID 32046364

Huang L, Chaurasiya B, Wu D, Wang H, Du Y, Tu J, et al. Versatile redox-sensitive pullulan nanoparticles for enhanced liver targeting and efficient cancer therapy. Nanomedicine. 2018 Apr;14(3):1005- 17. doi: 10.1016/j.nano.2018.01.015, PMID 29409820

Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, Van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev. 2020;159:344-63. doi: 10.1016/j.addr.2020.06.026, PMID 32622021

Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, et al. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B. 2015 Feb 14;3(6):939-58. doi: 10.1039/c4tb01611d, PMID 32261972

Lamprecht A. Nanomedicines in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol. 2015 Apr;12(4):195-204. doi: 10.1038/nrgastro.2015.37, PMID 25752711

Tarudji AW, Kievit FM. Active targeting and transport. In Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Elsevier. 2019. p. 19-36. doi: 10.1016/B978-0-12-816662-8.00003-5

Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014 Feb;66:2-25. doi: 10.1016/j.addr.2013.11.009, PMID 24270007

Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel). 2019 May 8;11(5):640. doi: 10.3390/cancers11050640, PMID 31072061

Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: A novel strategy for hepatocellular carcinoma. Int J Nanomedicine. 2016 Oct 31;11:5645-69. doi: 10.2147/IJN.S115727, PMID 27920520

Nobs L, Buchegger F, Gurny R, Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci. 2004 Aug;93(8):1980-92. doi: 10.1002/jps.20098, PMID 15236448

Andrieux K, Couvreur P. Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood-brain barrier. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Sep-Oct;1(5):463-74. doi: 10.1002/wnan.5, PMID 20049811

Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental models of hepatocellular carcinoma-A preclinical perspective. Cancers (Basel). 2021 Jul 21;13(15):3651. doi: 10.3390/ cancers13153651, PMID 34359553

Yanguas SC, Cogliati B, Willebrords J, Maes M, Colle I, Van den Bossche B, et al. Experimental models of liver fibrosis. Arch Toxicol. 2016 May;90(5):1025-48. doi: 10.1007/s00204-015-1543-4, PMID 26047667

Heindryckx F, Colle I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol. 2009 Aug;90(4):367-86. doi: 10.1111/j.1365-2613.2009.00656.x, PMID 19659896

Brown ZJ, Ruff SM, Pawlik TM. The effect of liver disease on hepatic microenvironment and implications for immune therapy. Front Pharmacol. 2023 Aug 7;14:1225821. doi: 10.3389/ fphar.2023.1225821, PMID 37608898

Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: A review. Tumour Biol. 2017 Mar;39(3). doi: 10.1177/1010428317695923, PMID 28347231

Jin KT, Du WL, Lan HR, Liu YY, Mao CS, Du JL, et al. Development of humanized mouse with patient-derived xenografts for cancer immunotherapy studies: A comprehensive review. Cancer Sci. 2021 Jul;112(7):2592-2606. doi: 10.1111/cas.14934. PMID: 33938090

Zhang L, Xu J, Zhou S, Yao F, Zhang R, You W, et al. Endothelial DGKG promotes tumor angiogenesis and immune evasion in hepatocellular carcinoma. J Hepatol. 2024 Jan;80(1):82-98. doi: 10.1016/j.jhep.2023.10.006, PMID 37838036

Tian H, Zhao S, Nice EC, Huang C, He W, Zou B, et al. A cascaded copper-based nanocatalyst by modulating glutathione and cyclooxygenase-2 for hepatocellular carcinoma therapy. J Colloid Interface Sci. 2022 Feb;607(2):1516-26. doi: 10.1016/j. jcis.2021.09.049, PMID 34592546

Zhang XP, Chen XJ, Li BZ, Xu S, Wu ZL, Hu MG, et al. Active targeted Janus nanoparticles enable anti-angiogenic drug combining chemotherapy agent to prevent postoperative hepatocellular carcinoma recurrence. Biomaterials. 2022 Feb;281:121362. doi: 10.1016/j.biomaterials.2022.121362, PMID 34998170

Wang W, Liu Q, Liang X, Kang Q, Wang Z. Protective role of naringin loaded solid nanoparticles against aflatoxin b1 induced hepatocellular carcinoma. Chem Biol Interact. 2022 Jan 5;351:109711. doi: 10.1016/j.cbi.2021.109711, PMID 34717916

Gupta N, Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochim Biophys Acta Rev Cancer. 2021 Apr;1875(2):188532. doi: 10.1016/j. bbcan.2021.188532, PMID 33667572

Jin Y, Yang X, Tian J. Targeted polypyrrole nanoparticles for the identification and treatment of hepatocellular carcinoma. Nanoscale. 2018 May 24;10(20):9594-601. doi: 10.1039/c8nr02036a, PMID 29745953

Grześkowiak BF, Maziukiewicz D, Kozłowska A, Kertmen A, Coy E, Mrówczyński R. Polyamidoamine dendrimers decorated multifunctional polydopamine nanoparticles for targeted chemo-and photothermal therapy of liver cancer model. Int J Mol Sci. 2021 Jan 13;22(2):738. doi: 10.3390/ijms22020738, PMID 33451063

Gong T, Wang X, Ma Q, Li J, Li M, Huang Y, et al. Triformyl cholic acid and folic acid functionalized magnetic graphene oxide nanocomposites: Multiple-targeted dual-modal synergistic chemotherapy/photothermal therapy for liver cancer. J Inorg Biochem. 2021 Oct;223:111558. doi: 10.1016/j.jinorgbio.2021.111558, PMID 34329998

Yang X, Zhang W, Jiang W, Kumar A, Zhou S, Cao Z, et al. Nanoconjugates to enhance PDT-mediated cancer immunotherapy by targeting the indoleamine-2,3-dioxygenase pathway. J Nanobiotechnology. 2021 Jun 14;19(1):182. doi: 10.1186/s12951- 021-00919-z, PMID 34127005

Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 2009 Jul 17;96(1):1- 8. doi: 10.1016/j.jphotobiol.2009.04.001, PMID 19406659

Zou H, Wang F, Zhou JJ, Liu X, He Q, Wang C, et al. Application of photodynamic therapy for liver malignancies. J Gastrointest Oncol. 2020 Apr;11(2):431-42. doi: 10.21037/jgo.2020.02.10, PMID 32399283

Shao J, Xue J, Dai Y, Liu H, Chen N, Jia L, et al. Inhibition of human hepatocellular carcinoma HepG2 by phthalocyanine photosensitiser Photocyanine: ROS production, apoptosis, cell cycle arrest. Eur J Cancer. 2012 Sep;48(13):2086-96. doi: 10.1016/j.ejca.2011.10.013, PMID 22265427

Abdel Fadeel D, Al-Toukhy GM, Elsharif AM, Al-Jameel SS, Mohamed HH, Youssef TE. Improved photodynamic efficacy of thiophenyl sulfonated zinc phthalocyanine loaded in lipid nano-carriers for hepatocellular carcinoma cancer cells. Photodiagn Photodyn Ther. 2018 Sep;23:25-31. doi: 10.1016/j.pdpdt.2018.06.003, PMID 29870793

Tsuda T, Kaibori M, Hishikawa H, Nakatake R, Okumura T, Ozeki E, et al. Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosome has antineoplastic effects for hepatocellular carcinoma. PLOS One. 2017 Aug 31;12(8):e0183527. doi: 10.1371/journal.pone.0183527, PMID 28859104

Ke MR, Ng DK, Lo PC. A pH-responsive fluorescent probe and photosensitiser based on a self-quenched phthalocyanine dimer. Chem Commun (Camb). 2012 Sep 18;48(72):9065-7. doi: 10.1039/c2cc34327d, PMID 22864462

Park DH, Cho J, Kwon OJ, Yun CO, Choy JH. Biodegradable inorganic nanovector: Passive versus active tumor targeting in siRNA transportation. Angew Chem Int Ed Engl. 2016 Mar 24;55(14):4582- 6. doi: 10.1002/anie.201510844, PMID 26879376

Mirzaei H, Djavid GE, Hadizadeh M, Jahanshiri-Moghadam M, Hajian P. The efficacy of Radachlorin-mediated photodynamic therapy in human hepatocellular carcinoma cells. J Photochem Photobiol B. 2015 Jan;142:86-91. doi: 10.1016/j.jphotobiol.2014.11.007, PMID 25528192

Dysart JS, Patterson MS. Characterization of photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro. Phys Med Biol. 2005 Jun 7;50(11):2597-616. doi: 10.1088/0031-9155/50/11/011, PMID 15901957

Xu J, Xia X, Leung AW, Xiang J, Jiang Y, Yu H, et al. Sonodynamic action of pyropheophorbide-a methyl ester induces mitochondrial damage in liver cancer cells. Ultrasonics. 2011 May;51(4):480-4. doi: 10.1016/j.ultras.2010.11.014. PMID: 21183195

Wu F, Shao ZY, Zhai BJ, Zhao CL, Shen DM. Ultrasound reverses multidrug resistance in human cancer cells by altering gene expression of ABC transporter proteins and Bax protein. Ultrasound Med Biol. 2011 Jan;37(1):151-9. doi: 10.1016/j. ultrasmedbio.2010.10.009 2010 Nov 16. PMID 21084157

Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011 Feb;11(2):85-95. doi: 10.1038/nrc2981, PMID 21258394

Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, et al. Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomater Sci Eng. 2020 Sep 14;6(9):4834-45. doi: 10.1021/acsbiomaterials.0c01009, PMID 33455215

Li G, Liu H, Hu T, Pu F, Ren J, Qu X. Dimensionality engineering of single-atom Nanozyme for efficient peroxidase-mimicking. J Am Chem Soc. 2023 Aug 2;145(30):16835-42. doi: 10.1021/ jacs.3c05162, PMID 37487021

Liang S, Liu B, Xiao X, Yuan M, Yang L, Ma P, et al. A robust narrow bandgap vanadium tetrasulfide sonosensitizer optimized by charge separation engineering for enhanced sonodynamic cancer therapy. Adv Mater. 2021 Sep;33(36):e2101467. doi: 10.1002/ adma.202101467, PMID 34296464

Meng X, Zhang F, Guo H, Zhang C, Hu H, Wang W, et al. One-pot approach to Fe2+/Fe3+ -Based MOFs with enhanced catalytic activity for Fenton reaction. Adv Healthc Mater. 2021 Oct;10(19):e2100780. doi: 10.1002/adhm.202100780, PMID 34390223

Zhou LL, Guan Q, Li WY, Zhang Z, Li YA, Dong YB. A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis. Small. 2021 Aug;17(32):e2101368. doi: 10.1002/smll.202101368, PMID 34216420

Yang K, Yu G, Yang Z, Yue L, Zhang X, Sun C, et al. Supramolecular polymerization-induced nanoassemblies for self-augmented cascade chemotherapy and chemodynamic therapy of tumor. Angew Chem Int Ed Engl. 2021 Aug 2;60(32):17570-8. doi: 10.1002/anie.202103721, PMID 34041833

Zeng Q, Klein C, Caruso S, Maille P, Laleh NG, Sommacale D, et al. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J Hepatol. 2022 Jul;77(1):116-127. doi: 10.1016/j.jhep.2022.01.018. PMID: 35143898.

Liu G, Zhu J, Guo H, Sun A, Chen P, Xi L, et al. Mo2 C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew Chem Int Ed Engl. 2019 Dec 16;58(51):18641-6. doi: 10.1002/ anie.201910815. Erratum in: Angew Chem Int Ed Engl. 2023 Jul 17;62(29):e202306404. doi: 10.1002/anie.202306404, PMID 37319121

Jin Q, Yan S, Hu H, Jin L, Pan Y, Zhang J, et al. Enhanced chemodynamic therapy and chemotherapy via delivery of a dual threat ArtePt and iodo-click reaction mediated glutathione consumption. Small Methods. 2021 Dec;5(12):e2101047. doi: 10.1002/smtd.202101047. PMID 34928038

Cai Y, Wang W, Jiao Q, Hu T, Ren Y, Su X, et al. Nanotechnology for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine. 2024 Dec 24;19:13805-13821. doi: 10.2147/IJN.S490661. PMID: 39735328

Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He J, et al. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol. 2021 Feb;18(2):427-39. doi: 10.1038/s41423- 020-0515-7, PMID 32939032

Wei Z, Yi Y, Luo Z, Gong X, Jiang Y, Hou D, et al. Selenopeptide nanomedicine activates natural killer cells for enhanced tumor chemoimmunotherapy. Adv Mater. 2022 Apr;34(17):e2108167. doi: 10.1002/adma.202108167, PMID 35132688

Cheng CT, Castro G, Liu CH, Lau P. Advanced nanotechnology: An arsenal to enhance immunotherapy in fighting cancer. Clin Chim Acta. 2019 May;492:12-9. doi: 10.1016/j.cca.2019.01.027, PMID 30711524

Matsuda A, Ishiguro K, Yan IK, Patel T. Extracellular vesicle-based therapeutic targeting of β-catenin to modulate anticancer immune responses in hepatocellular cancer. Hepatol Commun. 2019 Feb 4;3(4):525-41. doi: 10.1002/hep4.1311, PMID 30976743

Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012 Nov;18(11):1639-42. doi: 10.1038/ nm.2919. PMID: 23104132

Liu L, Zong ZM, Liu Q, Jiang SS, Zhang Q, Cen LQ, et al. A novel galactose-PEG-conjugated biodegradable copolymer is an efficient gene delivery vector for immunotherapy of hepatocellular carcinoma. Biomaterials. 2018 Nov;184:20-30. doi: 10.1016/j. biomaterials.2018.08.064, PMID 30195802

Guo J, Yu Z, Sun D, Zou Y, Liu Y, Huang L. Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Mol Cancer. 2021 Jan 6;20(1):10. doi: 10.1186/s12943-020-01297-0, PMID 33407548

Martin OA, Martin RF. Cancer radiotherapy: Understanding the price of tumor eradication. Front Cell Dev Biol. 2020 Apr 24;8:261. doi: 10.3389/fcell.2020.00261, PMID 32391355

Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 2014 Jul 10;21(2):260-92. doi: 10.1089/ars.2013.5489, PMID 24382094

Jackson RK, Liew LP, Hay MP. Overcoming radioresistance: Small molecule radiosensitisers and hypoxia-activated prodrugs. Clin Oncol (R Coll Radiol). 2019 May;31(5):290-302. doi: 10.1016/j. clon.2019.02.004, PMID 30853148

Choudhury R. Hypoxia and hyperbaric oxygen therapy: A review. Int J Gen Med. 2018 Nov 20;11:431-42. doi: 10.2147/IJGM.S172460, PMID 30538529

Park SI, Park SJ, Lee J, Kim HE, Park SJ, Sohn JW, et al. Inhibition of cyclic AMP response element-directed transcription by decoy oligonucleotides enhances tumor-specific radiosensitivity. Biochem Biophys Res Commun. 2016 Jan 15;469(3):363-9. doi: 10.1016/j. bbrc.2015.11.122, PMID 26655813

Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, et al. Metal-based Nanoenhancers for future radiotherapy: Radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018 Feb 12;8(7):1824-49. doi: 10.7150/thno.22172, PMID 29556359

Zheng Q, Yang H, Wei J, Tong JL, Shu YQ. The role and mechanisms of nanoparticles to enhance radiosensitivity in hepatocellular cell. Biomed Pharmacother. 2013 Sep;67(7):569-75. doi: 10.1016/j. biopha.2013.04.003. PMID: 23786887

Zhang Z, Niu X, Feng X, Wang X, Yu L, Wang W, et al. Construction of a pH/TGase “dual key”-responsive gold nano-radiosensitizer with liver tumor-targeting ability. ACS Biomater Sci Eng. 2021 Jul 12;7(7):3434-45. doi: 10.1021/acsbiomaterials.1c00428, PMID 34129333

Bohunicky B, Mousa SA. Biosensors: The new wave in cancer diagnosis. Nanotechnol Sci Appl. 2010 Dec 30;4:1-10. doi: 10.2147/ NSA.S13465, PMID 24198482

Zhang X, Guo Q, Cui D. Recent advances in nanotechnology applied to biosensors. Sensors (Basel). 2009;9(2):1033-53. doi: 10.3390/ s90201033, PMID 22399954

Liu T, Liu L, Li L, Cai J. Exploiting targeted nanomedicine for surveillance, diagnosis, and treatment of hepatocellular carcinoma. Mater Today Bio. 2023 Aug 14;22:100766. doi: 10.1016/j. mtbio.2023.100766, PMID 37636988

Geng Z, Zhang X, Fan Z, Lv X, Chen H. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci Rep. 2017 Nov 27;7(1):16378. doi: 10.1038/s41598-017-16762-y, PMID 29180650

Wang Z, Hu X, Sun N, Deng C. Aptamer-functionalized magnetic

metal organic framework as nanoprobe for biomarkers in human serum. Anal Chim Acta. 2019 Dec 9;1087:69-75. doi: 10.1016/j. aca.2019.08.038, PMID 31585568

Jo NR, Lee KJ, Shin YB. Enzyme-coupled nanoplasmonic biosensing of cancer markers in human serum. Biosens Bioelectron. 2016 Jul 15;81:324- 33. doi: 10.1016/j.bios.2016.03.009, PMID 26985585

Sun C, Li R, Song Y, Jiang X, Zhang C, Cheng S, et al. Ultrasensitive and reliable organic field-effect transistor-based biosensors in early liver cancer diagnosis. Anal Chem. 2021 Apr 20;93(15):6188-94. doi: 10.1021/acs.analchem.1c00372, PMID 33780235

Chen X, Pan Y, Liu H, Bai X, Wang N, Zhang B. Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor. Biosens Bioelectron. 2016 May 15;79:353-8. doi: 10.1016/j. bios.2015.12.060, PMID 26735868

Yang XY, Bai YY, Huangfu YY, Guo WJ, Yang YJ, Pang DW, et al. Ultrasensitive electrochemiluminescence biosensor based on closed bipolar electrode for alkaline phosphatase detection in single liver cancer cell. Anal Chem. 2021 Jan 26;93(3):1757-63. doi: 10.1021/ acs.analchem.0c04517, PMID 33373183

Sousa DA, Carneiro M, Ferreira D, Moreira FT, Sales MG, Rodrigues LR. Recent advances in the selection of cancer-specific aptamers for the development of biosensors. Curr Med Chem. 2022;29(37):5850-80. doi: 10.2174/0929867329666220224155037, PMID 35209816

Metkar SP, Fernandes G, Navti PD, Nikam AN, Kudarha R, Dhas N, et al. Nanoparticle drug delivery systems in hepatocellular carcinoma: A focus on targeting strategies and therapeutic applications. OpenNano. 2023;12:100159. doi: 10.1016/j.onano.2023.100159

Published

07-02-2025

How to Cite

LOKESHVAR RAVIKUMAR, RAMAIYAN VELMURUGAN, NITHIN VIDIYALA, PAVANI SUNKISHALA, and VINOD KUMAR TERIVEEDHI. “NANOTECHNOLOGY-DRIVEN THERAPEUTICS FOR LIVER CANCER: CLINICAL APPLICATIONS AND PHARMACEUTICAL INSIGHTS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 2, Feb. 2025, pp. 8-26, doi:10.22159/ajpcr.2025v18i2.53429.

Issue

Section

Review Article(s)