AUTOINDUCTION PROPERTIES OF RIFAMPICIN ON JAVANESE TUBERCULOSIS WITH VARIANT TYPE CYP3A4*1G

  • Em Sutrisna Department of Pharmacology of faculty of Medicine of Universitas Muhammadiyah Surakarta. Indonesia

Abstract

ABSTRACT
Rifampicin is one of the first-line anti-tuberculosis drugs. Rifampicin is metabolized by cytochrome P450 (CYP) 3A4. Polymorphisms of the CYP3A4
gene will affect gene expression. This leads to impaired of formation of the enzyme. The purpose of this review is to explore the effect of self-induction
of Rifampicin. The results of this review showed that Rifampicin was metabolized by the CYP3A4 enzyme. Rifampicin has self-induction properties
since Rifampicin also induces CYP3A4 enzyme. Rifampicin treatment repeated for 14 days leads to a shortening elimination half-life. Self-induction
of CYP3A4 by Rifampicin maximum is reached after 21 days of use. Bioavailability of Rifampicin decreased from 93% to 68% after 3 weeks of
treatment single dose orally. After 7 days administration of Rifampicin will increase clearance but decrease the area under the curve and Cmin. The
effect of autoinduction of Rifampicin is estimated occurs after the first 6 days of administration. In individual with the variant type of CYP3A4 namely
CYP3A4*1G/*1G, the effect of self-induction of Rifampicin is minimal.
Keywords: Autoinduction, Rifampicin, Cytochrome P450 3A4*1G.

Author Biography

Em Sutrisna, Department of Pharmacology of faculty of Medicine of Universitas Muhammadiyah Surakarta. Indonesia
Department of Pharmacology, Faculty of Medicine of Universitas Muhammadiyah Surakarta, Indonesia

References

REFERENCES
1. Cavallari LH, Lam YW, dalam DiPiro JT, Talbert LI, Yee GC, Matzke GR, et al. Pharmacotherapy: A Pathophysiologic Approach. New York: Mc Graw Hill Companies Inc.; 2005. p. 75-90.
2. Baneyx G, Parrott N, Meille C, Iliadis A, Lavé T. Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: Influence of time between substrate and inducer administration. Eur J Pharm Sci 2014;56:1-15.
3. van der Weide J, Hinrichs JW. The influence of cytochrome P450 pharmacogenetics on disposition of common antidepressant and antipsychotic medications. Clin Biochem Rev 2006;27(1):17-25.
4. de Groot MJ. Designing better drugs: Predicting cytochrome P450 metabolism. Drug Discov Today 2006;11(13-14):601-6.
5. Bozina N, Bradamante V, Lovric M. Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol 2009;60(2):217-42.
6. Correia MA . Drug Biotransformation . In Katzung BG, Master SB & Trevor AJ. Basic and clinical pharmacology. Chapter 4.11th ed , Mc Graw Hill. New York.2009.p 54-56.
7. Slaughter RL, Edwards DJ. Recent advances: The cytochrome P450 enzymes. Ann Pharmacother 1995;29(6):619-24.
8. Hsieh KP, Lin YY, Cheng CL, Lai ML, Lin MS, Siest JP, et al. Novel mutations of CYP3A4 in Chinise. Drug Metab Dispos 2001;29(3):268‑73.
9. Tomaszewski P, Kubiak-Tomaszewska G, Pachecka J. Cytochrome P450 polymorphism – Molecular, metabolic, and pharmacogenetic aspects. II. Participation of CYP isoenzymes in the metabolism of endogenous substances and drugs. Acta Pol Pharm 2008;65:307-18.
10. van Schaik RH, de Wildt SN, van Iperen NM, Uitterlinden AG, van den Anker JN, Lindemans J. CYP3A4-V polymorphism detection by PCR-restriction fragment length polymorphism analysis and its allelic frequency among 199 Dutch Caucasians. Clin Chem 2000;46(11):1834‑6.
11. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 2011;11(4):274-86.
12. Lee SJ, Lee SS, Jeong HE, Shon JH, Ryu JY, Sunwoo YE, et al. The CYP3A4*18 allele, the most frequent coding variant in asian populations, does not significantly affect the midazolam disposition in heterozygous individuals. Drug Metab Dispos 2007;35(11):2095-101.
13. Kolars JC, Awmi WM, Merion RM, Watkins PB. First pass metabolism of cyclosporine by the gut. Lancet 1991;338(8781):1488-90.
14. Dilger K, Hofmann U, Klotz U. Enzyme induction in the elderly: Effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin Pharmacol Ther 2000;67(5):512-20.
15. Seeff LB, Cuccrevini BA, Zimmerman HJ, Adler E, Benjamin SB. Acetaminophen hepatotoxicity in alcoholics: A therapeutic misadventure. Ann Intern Med 1986;104(3):399-404.
16. Tang C, Lin JH, Lu AY. Metabolism-based drug-drug interactions: What determines individual variability in cytochrome p450 induction? Drug Metab Dispos 2005;33(5):603-13.
17. Zhou HH, Anthony LB, Wood AJ, Wilkinson GR. Induction of polymorphic 4_-hydroxylation of S-mephenytoin by rifampicin. Br J Clin Pharmacol 1990;30(3):471-5.
18. Backman JT, Olkkola KT, Ojala M, Laaksovirta H, Neuvonen PJ. Concentrations and effects of oral midazolam are greatly reduced in patients treated with carbamazepine or phenytoin. Epilepsia 1996;37(3):253-7.
19. Villikka K, Kivisto KT, Backman JT, Olkkola KT, Neuvonen PJ. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997;61(1):8-14.
20. Diaz D, Fabre I, Daujat M, Saint Aubert B, Bories P, Michel H, et al. Omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome P450. Gastroenterology 1990;99(3):737-47.
21. Watkins PB, Murray SA, Winkelman LG, Heuman DA, Wrighton SA, Guzelian PS. Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. Studies in rats and patients. J Clin Invest 1989;83(2):688-97.
22. Chambers HF & Deck DH. Anti mycobacterial drugs. In Katzung BG,
Asian J Pharm Clin Res, Vol 8, Issue 4, 2015, 21-23
Sutrisna
23
Master SB & Trevor AJ. Basic and clinical pharmacology. Chapter 47.11th ed , Mc Graw Hill. New York.2009.p.823-830.
23. Chambers HF. Obat Anti Mikobakteri. Dalam Farmakologi Dasar dan Klinik, diterjemahkan bagian farmakologi. Salemba Medika, Jakarta: Fakultas Kedokteran Universitas Airlangga; 2004. p. 96-8.
24. Petri WA. Antimicrobial agent: Drugs use in chemotherapy of tuberculosis, mycobacterium complex disease and leprosy. In: Hardman JG, Limbrid LE, Gilman AG, editors. Goodman & Gilman’s the Pharmacological Basis of Therapeutics. 11th ed. New York: McGraw Hill Companies Inc.; 2006. p. 1273-80.
25. Istiatoro YH, & Setyabudi R, Tuberkulostatic and Leprostatic, in Gunawan SG, Setyabudi, R & Nafrialdi: Pharmacology and Therapy. Faculty of medicine Universitas Indonesia, Jakarta.2007. p.613-637.
26. Jamis-Dow CA, Katki AG, Collins JM, Klecker RW. Rifampin and rifabutin and their metabolism by human liver esterases. Xenobiotica 1997;27(10):1015-24.
27. Venkatesan D. Clinical Pharmacokinetic considerations in the treatment of the patients with leprosy. Clin Pharmacokinet 1989;16(6):365-86.
28. Prakash J, Velpandian T, Pande JN. Serum rifampicin levels in patiens with tuberculosis. Clin Drug Invest 2003;23(7):463-72.
29. Yamashita F, Sasa Y, Yoshida S, Hisaka A, Asai Y, Kitano H, et al. Modeling of rifampicin-Induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS One 2013;8(9):e70330.
30. Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 1978;3(2):108-27.
31. Acocella G. Pharmacokinetics and metabolism of rifampin in humans. Rev Infect Dis 1983;5 Suppl 3:S428-32.
32. Peloquin C. What is the ‘right’ dose of rifampin? Int J Tuberc Lung Dis 2003;7(1):3-5.
33. Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT. Pharmacokinetic interactions with rifampicin: Clinical relevance. Clin Pharmacokinet 2003;42(9):819-50.
34. Smythe W, Khandelwal A, Merle C, Rustomjee R, Ginafon M, Bocar Lo M, et al. A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. Antimicrob Agents Chemother 2012;56(4):2091-8.
35. Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M. Pharamacokinetic of oral and intravenous rifampicin during chronic administration. Klin Wochecnhr 1985;63(23):1205-11.
36. Benedetti MS, Dostert P. Induction and autoinduction properties of rifamycin derivates: A review of animal and human sudies. Environ Health Perspect 1994;102 Suppl 9:101-4.
37. Chen J, Raymond K. Roles of rifampicin in drug-drug interactions: Underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob 2006;5:3.
38. Shuldiner A, Carillo MW, Hebert JM. Important haplotype information for CYP3A4. review. 2007. Available from: http://www.pharmgkb.org/search/annotatedGene/cyp3a4/haplotype.jsp. [Last accessed on 2013 Sep 02].
39. Gao Y, Zhang LR, Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not simvastatin. Eur J Clin Pharmacol 2008;64(9):877-82.
40. Zhang W, Chang YZ, Kan QC, Zhang LR, Li ZS, Lu H, et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur J Clin Pharmacol 2010;66(1):61-6.
41. Sutrisna, EM, Dwiprahasto I, Astuti I, Kristin E. CYP3A4*1G polymorphism on Javanese people. Indonesian J Biotech 2011;16(2):83‑7.
42. Sutrisna, EM . The impacts of MDR1C3435T and CYP3A4*1G gene polymorphism toward plasma rifampicin levels and acid-fastness bacteria conversion in Javanese patients with pulmonary tuberculosis. Dissertation, 2011.
Statistics
539 Views | 1193 Downloads
How to Cite
Sutrisna, E. “AUTOINDUCTION PROPERTIES OF RIFAMPICIN ON JAVANESE TUBERCULOSIS WITH VARIANT TYPE CYP3A4*1G”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 8, no. 4, July 2015, pp. 21-23, https://innovareacademics.in/journals/index.php/ajpcr/article/view/6107.
Section
Review Article(s)