OCULAR DRUG DELIVERY SYSTEM: CHALLENGES AND APPROACHES

  • VISHAL KUMAR RAJ Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida 201306, Uttar Pradesh, India
  • RUPA MAZUMDER Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida 201306, Uttar Pradesh, India
  • MONIKA MADHRA Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida 201306, Uttar Pradesh, India

Abstract

The ocular drug delivery deviates through a number of anatomical and physiological barriers, which have been a bottleneck for the ophthalmologists. The ocular barriers, static and dynamic, decrease the absorption of the therapeutic agents and the entry of the xenobiotics. Thus, a conventional ocular dosage form has various disadvantages of its use in ocular diseases. Hence, an ideal ocular delivery system has always been aimed, where the bioavailability of a drug is maintained for a longer period of time. The present review aims to focus on the drawbacks of the conventional ocular therapy and the advantages of designing novel delivery systems, with their certain specific advantages in ocular pharmacokinetics and the enhancement of bioavailability. These novel approaches emphasize on the benefits of various ocular drug delivery systems, like eye ointments, gels and use of viscosity enhancers, prodrugs, penetration enhancers, microparticles, liposomes, niosomes, ocular inserts, implants, intravitreal injections, nanoparticles, nanosuspension, microemulsion, dendrimers, in situ gels, iontophoresis and periocular injections. The compiled data presented in this review will act as a good information resource and reference point for further researches in the field of ocular drug delivery aiming non-invasive sustained release of drugs in the anterior and posterior segments of the eye.

Keywords: Barriers, Anterior and posterior segments, Ocular bioavailability, Ocular drug delivery, Convectional delivery, Novel drug delivery

References

1. Palani S, Joseph Nisha Mary, Goda CC, Zachariah Anish, Ayenew Zelalem. Ocular drug delivery: a review. Int J Pharm Sci Res 2010;1:1-1.
2. Le Bourlais C, Aear L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems recent advances. Prog Retin Eye Res 1998;17:33-58.
3. Patton TF, Robinson JR. Quantitative precorneal disposition of topically applied pilocarpine nitrate in rabbit eyes. J Pharm Sci 1976;65:1295-301.
4. Wood RW, Li VH, Kreuter J, Robinson JR. Ocular disposition of poly-hexyl-2-cyano [3-14C] acrylate nanoparticles in the albino rabbit. Int J Pharm 1985;23:175-83.
5. Hughes PM, Mitra AK. Overview of ocular drug delivery and iatrogenic ocular cytopathologies. Drugs Pharm Sci 1993;58:1-27.
6. Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Delivery Rev 1995;16:39-43.
7. Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Delivery 2004;1:99-114.
8. Anshul S, Renu S. A review on levofloxacin in situ-gel formulation. Asian J Pharm Clin Res 2015;8:37-41.
9. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Design 2009;15:2724-50.
10. Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Curr Drug Delivery 2006;3:207-17.
11. Reddy KR, Yadav MR, Reddy PS. Preparation and evaluation of aceclofenac ophthalmic in-situ gels. J Chem Biol Phys Sci 2011;1:289-98.
12. Champalal KD, Sushilkumar P. Current status of ophthalmic in-situ forming hydrogel. Int J Pharm Bio Sci 2012;3:372-88.
13. Burgalassi S, Chetoni P, Monti D, Saettone MF. Cytotoxicity of potential ocular permeation enhancers evaluated on rabbit and human corneal epithelial cell lines. Toxicol Lett 2001;122:1-8.
14. Ramesh Y, Kothapalli CB, Reddigari JR. A novel approaches on ocular drug delivery system. J Drug Delivery Ther 2017;7:117-24.
15. Patel PB, Shastri PK, Sehlat PK, Shukla AK. Opthalmic drug delivery systems: challenges and approaches. Systemic Rev Pharm 2010;1:113-20.
16. Peyman GA, Ganiban GJ. Delivery systems for intraocular routes. Adv Drug Delivery Rev 1995;16:107-23.
17. Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Delivery 2007;4:371-88.
18. Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 2003;3:45-56.
19. Lambert G, Guilatt RL. Current ocular drug delivery challenges. Drug Dev Report Industry Overview Deals 2005;33:1-2.
20. Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Delivery Rev 1995;16:39-43.
21. Saettone MF, Giannaccini B, Ravecca S, La Marca F, Tota G. Polymer effects on ocular bioavailability-the influence of different liquid vehicles on the mydriatic response of tropicamide in humans and in rabbits. Int J Pharm 1984;20:187-202.
22. Saettone MF, Giannaccini B, Ravecca S, LaMarca F, Tota G. Evaluation of viscous ophthalmic vehicles containing carbomer by slit-lamp fluorophotometry in humans. Int J Pharm 1984;20:187-202.
23. Rathore KS. In situ gelling ophthalmic drug delivery system: an overview. Int J Pharm Pharm Sci 2010;2 Suppl 4:30-4.
24. Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: characterisation and research methods. Sci World J 2014;2014:1-14.
25. Lambert G, Guilatt RL. Current ocular drug delivery challenges. Drug Dev Report Industry Overview Deals 2005;33:1-2.
26. Saettone MF, Giannaccini B, Guiducci A, Savigni P. Semisolid ophthalmic vehicles. III. An evaluation of four organic hydrogels containing pilocarpine. Int J Pharm 1986;31:261-70.
27. Rajasekaran A, Kumaran KS, Preetha JP, Karthika K. A comparative review on conventional and advanced ocular drug delivery formulations. Int J Pharmtech Res 2010;2:668-74.
28. Jarvinen T, Jarvinen K. Prodrugs for improved ocular drug delivery. Adv Drug Delivery Rev 1996;19:203-24.
29. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004;269:1-4.
30. Sasaki H, Igarashi Y, Nagano T, Yamamura K, Nishida K, Nakamura J. Improvement of the ocular bioavailability of timolol by sorbic acid. J Pharm Pharmacol 1995;47:17-21.
31. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009;26:1197–216.
32. Rajasekaran A, Kumaran KS, Preetha JP, Karthika K. A comparative review on conventional and advanced ocular drug delivery formulations. Int J Pharmtech Res 2010;2:668-74.
33. Nanjawade BK, Manvi FV, Manjappa AS. In situ-forming hydrogels for sustained ophthalmic drug delivery. J Controlled Release 2007;122:119-34.
34. Tangri P, Khurana S. Basics of ocular drug delivery systems. Int J Res Pharm Biomed Sci 2011;2:1541-52.
35. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discovery Today 2008;13:144-51.
36. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004;269:1-4.
37. Budai L, Hajdu M, Budai M, Grof P, Beni S, Noszal B, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm 2007;343:34-40.
38. Kadian RE. Nanoparticles: a promising drug delivery approach. Asian J Pharm Clin Res 2018;11:30-5.
39. Jeencham R, Sutheerawattananonda M, Tiyaboonchai W. Preparation and characterization of chitosan/regenerated silk fibroin (cs/rsf) films as a biomaterial for contact lenses-based ophthalmic drug delivery system. Int J Appl Pharm 2019;11:275-84.
40. Nisha S, Deepak K. An insight to ophthalmic drug delivery system. Int J Pharm Studies Res 2012;3:9-13.
41. Shivhare R, Pathak A, Shrivastava N, Singh C, Tiwari G, Goyal R. An update review on novel advanced ocular drug delivery system. World J Pharm Pharm Sci 2012;1:545-68.
42. Mudgil M, Gupta N, Nagpal M, Pawar PR. Nanotechnology: a new approach for ocular drug delivery system. Int J Pharm Pharm Sci 2012;4:105-12.
43. Bruschi ML, de Freitas O. Oral bioadhesive drug delivery systems. Drug Dev Ind Pharm 2005;31:293-310.
44. Marchal Heussler L, Sirbat D, Hoffman M, Maincent P. Poly (?-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res 1993;10:386-90.
45. Zimmer K, Kreuter J. Biodegradable polymeric nanoparticles as drug delivery devices. Adv Drug Delivery Rev 1995;16:61-73.
46. Alonso MJ, Calvo P, VilaJato JL, Lopez MI, Llorente J, Pastor JC. Increased ocular corneal uptake of drugs using poly-e-caprolactone nanocapsules and nanoemulsions. In 22nd International Symposium on Controlled Release Bioactive Materials; 1995.
47. Kayser O, Lemke A, Hernandez Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;6:3-5.
48. Morsi NA, Ghorab DA, Refai HA, Teba HO. Preparation and evaluation of alginate/chitosan nanodispersions for ocular delivery. Int J Pharm Pharm Sci 2015;7:234-40.
49. Ansari MJ, Kohli K, Dixit N. Microemulsions as potential drug delivery systems: a review. PDA J Pharm Sci Technol 2008;62:66-79.
50. Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 2013;29:151-65.
51. Chaplot SP, Rupenthal ID. Dendrimers for gene delivery–a potential approach for ocular therapy? J Pharm Pharmacol 2014;66:542-56.
52. Vandamme TF, Brobeck L. Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Controlled Release 2005;102:23-38.
53. Stasko NA, Johnson CB, Schoenfisch MH, Johnson TA, Holmuhamedov EL. Cytotoxicity of polypropylenimine dendrimer conjugates on cultured endothelial cells. Biomacromolecules 2007;8:3853-9.
54. Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly (amidoamine) dendrimers. Mol Biosyst 2009;5:1148-56.
55. Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, et al. Designing dendrimers for ocular drug delivery. Eur J Med Chem 2010;45:326-34.
56. Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Investig Ophthalmol Vis Sci 2010;51:5804-16.
57. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 2012;6:7595-606.
58. Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomed Nanotechnol Biol Med 2012;8:776-83.
59. Gajbhiye V, Kumar PV, Tekade RK, Jain NK. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. Eur J Med Chem 2009;44:1155-66.
60. Bazzaz L, FY Al-kotaji M. Opthalmic in-situ sustained gel of ciprofloxacin, preparation and evaluation study. Int J Appl Pharm 2018;10:153-61.
61. Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Delivery Formul 2008;2:238-57.
62. Joshi A. Recent developments in ophthalmic drug delivery. J Ocul Pharmacol Ther 1994;10:29-45.
63. Snehaprabha, Bajaj A. Design of ocular controlled release ocuserts of brinzolamide. Int J Pharm 2016;6:191-202.
64. Saettone MF, Salminen L. Polymers used in ocular dosage form and drug delivery systems. Adv Drug Delivery Rev 1995;16:95-106.
65. Shell JW. Rheological evaluation and ocular contact time of some carbomer gels for ophthalmic use. Drug Dev Res 1985;6:233-61.
66. Sanborn GE, Anand R, Torti RE, Nightingale SD, Cal SX, Yates B, et al. Sustained-release ganciclovir therapy for treatment of cytomegalovirus retinitis: use of an intravitreal device. Arch Ophthalmol 1992;110:188-95.
67. Hashizoe M, Ogura Y, Takanashi T, Kunou N, Honda Y, Ikada Y. Biodegradable polymeric device for sustained intravitreal release of ganciclovir in rabbits. Curr Eye Res 1997;16:633-9.
68. Kimura H, Ogura Y, Hashizoe M, Nishiwaki H, Honda Y, Ikada Y. A new vitreal drug delivery system using an implantable biodegradable polymeric device. Investig Ophthalmol Vis Sci 1994;35:2815-9.
69. Musch DC, Martin DF, Gordon JF, Davis MD, Kuppermann BD, Ganciclovir Implant Study Group. Treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant. N Engl J Med 1997;337:83-90.
70. Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Delivery Rev 2006;58:1182-202.
71. Lopez Cortes LF, Pastor Ramos MT, Ruiz Valderas R, Cordero E, Uceda Montanes A, Claro Cala CM, et al. Intravitreal pharmacokinetics and retinal concentrations of ganciclovir and foscarnet after intravitreal administration in rabbits. Investig Ophthalmol Vis Sci 2001;42:1024-8.
72. Cheng L, Hostetler KY, Lee J, Koh HJ, Beadle JR, Bessho K, et al. Characterization of a novel intraocular drug-delivery system using crystalline lipid antiviral prodrugs of ganciclovir and cyclic cidofovir. Investig Ophthalmol Vis Sci 2004;45:4138-44.
73. Fisher JP, Civiletto SE, Forster RK. Toxicity, efficacy, and clearance of intravitreally injected cefazolin. Arch Ophthalmol 1982;100:650-2.
74. Iyer MN, He F, Wensel TG, Mieler WF, Benz MS, Holz ER. Intravitreal clearance of moxifloxacin. Trans Am Ophthalmol Soc 2005;103:76.
75. Barza M, Lynch E, Baum JL. Pharmacokinetics of newer cephalosporins after subconjunctival and intravitreal injection in rabbits. Arch Ophthalmol 1993;111:121-5.
76. Kishore K, Conway MD, Peyman GA. Intravitreal clindamycin and dexamethasone for toxoplasmic retinochoroiditis. OSLI Retina 2001;32:183-92.
77. El-Massry A, Meredith TA, Aguilar HE, Shaarawy A, Kincaid M, Dick J, et al. Aminoglycoside levels in the rabbit vitreous cavity after intravenous administration. Am J Ophthalmol 1996;122:684-9.
78. Kim H, Csaky KG, Gravlin L, Yuan P, Lutz RJ, Bungay PM, et al. Safety and pharmacokinetics of a preservative-free triamcinolone acetonide formulation for intravitreal administration. Retina 2006;26:523-30.
79. Kim H, Csaky KG, Chan CC, Bungay PM, Lutz RJ, Dedrick RL, et al. The pharmacokinetics of rituximab following an intravitreal injection. Exp Eye Res 2006;82:760-6.
80. Hughes MS, Sang DN. Safety and efficacy of intravitreal bevacizumab followed by pegaptanib maintenance as a treatment regimen for age-related macular degeneration. OSLI Retina 2006;37:446-54.
81. Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res 1985;40:687-96.
82. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Delivery 2006;3:275-87.
83. Maurice D. Practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther 2001;17:393-401.
84. Baum U, Peyman GA, Barza M. Intravitreal administration of antibiotic in the treatment of bacterial endophthalmitis. III. Consensus. Surv Ophthalmol 1982;26:204-6.
85. Campochiaro PA, Conway BP. Aminoglycoside toxicity-a survey of retinal specialists: implications for ocular use. Arch Ophthalmol 1991;109:946-50.
86. Martin DF, Sierra Madero J, Walmsley S, Wolitz RA, Macey K, Georgiou P, et al. A controlled trial of valganciclovir as induction therapy for cytomegalovirus retinitis. N Engl J Med 2002;346:1119-26.
87. Velez G, Whitcup SM. New developments in sustained release drug delivery for the treatment of intraocular disease. Br J Ophthalmol 1999;83:1225-9.
88. Somsanguan Ausayakhun MD, Yuvaves P, PN SN, PN JP. Treatment of cytomegalovirus retinitis in AIDS patients with intravitreal ganciclovir. J Med Assoc Thai 2005;88:S15-20.
89. Baudouin C, Chassain C, Caujolle C, Gastaud P. Treatment of cytomegalovirus retinitis in AIDS patients using intravitreal injections of highly concentrated ganciclovir. Ophthalmologica 1996;210:329-35.
90. Fujino Y, Nagata Y, Miyoshi M, Ono A, Oka S, Iwamoto A, et al. Intravitreal injection of ganciclovir in AIDS patients with cytomegalovirus retinitis. Nippon Ganka Gakkai Zasshi 1996;100:634-40.
91. Young S, McCluskey P, Minassian DC, Joblin P, Jones C, Coroneo MT, et al. Retinal detachment in cytomegalovirus retinitis: intravenous versus intravitreal therapy. Clin Exp Ophthalmol 2003;31:96-102.
92. Bejjani RA, Andrieu C, Bloquel C, Berdugo M, BenEzra D, Behar Cohen F. Electrically assisted ocular gene therapy. Surv Ophthalmol 2007;52:196-208.
93. Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Delivery Rev 2005;57:2063-79.
94. Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M. Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther 2003;19:145-51.
95. Frucht Pery J, Raiskup F, Mechoulam H, Shapiro M, Eljarrat Binstock E, Domb A. Iontophoretic treatment of experimental pseudomonas keratitis in rabbit eyes using gentamicin-loaded hydrogels. Cornea 2006;25:1182-6.
96. Eljarrat Binstock E, Raiskup F, Frucht Pery J, Domb AJ. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Controlled Release 2005;106:386-90.
97. Tiwari A, Shukla RK. Novel ocular drug delivery systems: an overview. J Chem Pharm Res 2010;2:348-55.
98. Thakur RR, Kashiv M. Modern delivery systems for ocular drug formulations: a comparative overview WRT conventional dosage form. Int J Res Pharm Biomed Sci 2011;2:8-18.
99. Nikam VK, Kotade KB, Gaware VM, Dolas RT, Dhamak KB, Somwanshi SB. Iontophoresis in drug delivery: history and application. Pharmacologyonline 2011;3:543-61.
100. Ebner R, Devoto MH, Weil D, Bordaberry M, Mir C, Martinez H, et al. Treatment of thyroid associated ophthalmopathy with periocular injections of triamcinolone. Br J Ophthalmol 2004;88:1380-6.
101. Canavan KS, Dark A, Garrioch MA. Sub?Tenon’s administration of local anesthetic: a review of the technique. Br J Anaesth 2003;90:787-93.
102. Kim TW, Lindsey JD, Aihara M, Anthony TL, Weinreb RN. Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. Invest Ophthalmol Visual Sci 2002;43:1809-16.
103. Inoue Y, Shimura A, Horage M, Maeda R, Murata I, Sugino M, et al. Effects of the properties of creams on skin penetration. Int J Pharm 2015;5:645-54.
Statistics
62 Views | 31 Downloads
Citatons
How to Cite
RAJ, V. K., MAZUMDER, R., & MADHRA, M. (2020). OCULAR DRUG DELIVERY SYSTEM: CHALLENGES AND APPROACHES. International Journal of Applied Pharmaceutics, 12(5), 49-57. https://doi.org/10.22159/ijap.2020v12i5.38762
Section
Review Article(s)