NOVEL APPROACHES IN OCULAR DRUG DELIVERY-A REVOLUTION

Authors

  • AYUSHI KAUSHIK Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, Institutional Area, Greater Noida, Uttar Pradesh 201306, India
  • RUPA MAZUMDER Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, Institutional Area, Greater Noida, Uttar Pradesh 201306, India https://orcid.org/0000-0002-1888-548X
  • SWARUPANJALI PADHI Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, Institutional Area, Greater Noida, Uttar Pradesh 201306, India https://orcid.org/0000-0003-2200-5542
  • AVIJIT MAZUMDER Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, Institutional Area, Greater Noida, Uttar Pradesh 201306, India https://orcid.org/0000-0002-3053-8106
  • RAJAT BUDHORI Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, Institutional Area, Greater Noida, Uttar Pradesh 201306, India
  • MANORMA Noida Institute of Engineering and Technology (Pharmacy Institute), 19, Knowledge Park-2, Institutional Area, Greater Noida, Uttar Pradesh 201306, India
  • SWARNALI DAS PAUL SSTC-SSGI-FPS, Bhilai, Chhattisgarh, 490020, India

DOI:

https://doi.org/10.22159/ijap.2022v14i3.44045

Keywords:

Ocular barriers, Novel delivery, Nanowafers, Cubosomes, Microneedles, Cell therapy, Implants

Abstract

Conveying the therapeutic agent to the human eye has been a struggling task for formulators and scientists because of the complicated arrangement of the eye. The therapeutic agents needed to deliver the drugs to specific sites of the eye require the crossing of various ocular barriers, which act as hitches for drug delivery. Conventional preparations present in the market do not achieve the desired therapeutic results due to their lower bioavailability, less retention time, or difficulty in reaching the site of action. In a need to overcome the challenges with these preparations, various modern technologies are being applied to address the same with outstanding results. The purpose of the present review is to focus on several innovative approaches, viz., the development of novel ocular drug delivery systems including liposomes, niosomes, nano-wafers, cubosomes, microneedles, dendrimers, and many others, adopted to combat various ocular diseases. In the present review, various novel formulations and drug delivery approaches have been taken into consideration, as developed, and reported by various scientists and researchers working in the field of ocular drug delivery systems.

Downloads

Download data is not yet available.

References

Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018 Feb 27;10(1):28. doi: 10.3390/pharmaceutics10010028, PMID 29495528.

Souto EB, Dias-Ferreira J, Lopez Machado A, Ettcheto M, Cano A, Camins Espuny AC, Espina M, Garcia ML, Sanchez Lopez E. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics. 2019 Sep 6;11(9):460. doi: 10.3390/pharmaceutics11090460, PMID 31500106.

Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci. 2012 May;12(5):608-20. doi: 10.1002/mabi.201100419, PMID 22508445.

Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019 Sep;370(3):602-24. doi: 10.1124/jpet.119.256933, PMID 31072813.

Nagai N. Design of novel ophthalmic formulation containing drug nanoparticles and its usefulness as anti-glaucoma drugs. Yakugaku Zasshi. 2016;136(10):1385-90. doi: 10.1248/yakushi.16-00089, PMID 27725388.

Tiwari R, Pandey V, Asati S, Soni V, Jain D. Therapeutic challenges in ocular delivery of lipid-based emulsion. Egypt J Basic Appl Sci. 2018;5(2):121-9. doi: 10.1016/j.ejbas.2018.04.001.

Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol. 2020;55. doi: 10.1016/j.jddst.2019.101389, PMID 101389.

Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009 May 21;136(1):2-13. doi: 10.1016/j.jconrel.2008.12.018. PMID 19331856.

Kadian R. Nanoparticles: A promising drug delivery approach. Asian J Pharm Clin Res. 2018;11(1):30. doi: 10.22159/ ajpcr.2017.v11i1.22035.

Kumari B. Ocular drug delivery system: approaches to improve ocular bioavailability. GSC Biol Pharm Sci. 2019;6(3):1-10. doi: 10.30574/gscbps.2019.6.3.0030.

Zhang J, Wang S. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm. 2009 May 8;372(1-2):66-75. doi: 10.1016/j.ijpharm.2009.01.001. PMID 19437594.

Hathout RM, Gad HA, Abdel Hafez SM, Nasser N, Khalil N, Ateyya T, Amr A, Yasser N, Nasr S, Metwally AA. Gelatinized core liposomes: A new trojan horse for the development of a novel timolol maleate glaucoma medication. Int J Pharm. 2019 Feb 10;556:192-9. doi: 10.1016/j.ijpharm.2018.12.015. PMID 30553005.

Shen Y, Tu J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J. 2007 Dec 7;9(3):E371-7. doi: 10.1208/aapsj0903044, PMID 18170984.

Sun Y, Fox T, Adhikary G, Kester M, Pearlman E. Inhibition of corneal inflammation by liposomal delivery of short-chain, C-6 ceramide. J Leukoc Biol. 2008 Jun;83(6):1512-21. doi: 10.1189/jlb.0108076, PMID 18372342.

Ren T, Lin X, Zhang Q, You D, Liu X, Tao X, Gou J, Zhang Y, Yin T, He H, Tang X. Encapsulation of azithromycin ion pair in liposome for enhancing ocular delivery and therapeutic efficacy on dry eye. Mol Pharm. 2018 Nov 5;15(11):4862-71. doi: 10.1021/acs.molpharmaceut.8b00516. PMID 30251864.

Dhadwal A, Sharma DR, Pandit V, Ashawat MS, Kumar P. Cubosomes: A novel carrier for transdermal drug delivery. J Drug Delivery Ther. 2020;10(1):123-30. doi: 10.22270/jddt.v10i1.3814.

Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK. Novel nanosystems for the treatment of ocular inflammation: current paradigms and future research directions. J Control Release. 2017 Dec 28;268:19-39. doi: 10.1016/j.jconrel.2017.07.035. PMID 28756272.

Ali Z, Sharma P, Warsi M. Fabrication and evaluation of ketorolac loaded Cubosome for ocular drug delivery. J App Pharm Sci. 2016;6:204-8. doi: 10.7324/JAPS.2016.60930.

Hartnett TE, O’Connor AJ, Ladewig K. Cubosomes and other potential ocular drug delivery vehicles for macromolecular therapeutics. Expert Opin Drug Deliv. 2015;12(9):1513-26. doi: 10.1517/17425247.2015.1021680, PMID 25745885.

Priyanka P, Sri Rekha M, Devi AS. Review on formulation and evaluation of solid lipid nanoparticles for vaginal application. Int J Pharm Pharm Sci. 2022:1-8. doi: 10.22159/ijpps.2022v14i1.42595.

Huang J, Peng T, Li Y, Zhan Z, Zeng Y, Huang Y, Pan X, Wu CY, Wu C. Ocular Cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech. 2017 Nov;18(8):2919-26. doi: 10.1208/s12249-017-0763-8, PMID 28429294.

Coursey TG, Henriksson JT, Marcano DC, Shin CS, Isenhart LC, Ahmed F, De Paiva CS, Pflugfelder SC, Acharya G. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release. 2015 Sep 10;213:168-74. doi: 10.1016/j.jconrel.2015.07.007. PMID 26184051.

Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: challenges and novel formulation approaches. Adv Drug Deliv Rev. 2018 Feb 15;126:67-95. doi: 10.1016/j.addr.2018.01.008. PMID 29339145.

Garrett Q, Simmons PA, Xu S, Vehige J, Zhao Z, Ehrmann K, Willcox M. Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2007 Apr;48(4):1559-67. doi: 10.1167/iovs.06-0848, PMID 17389485.

Coursey TG, Henriksson JT, Marcano DC, Shin CS, Isenhart LC, Ahmed F, De Paiva CS, Pflugfelder SC, Acharya G. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release. 2015 Sep 10;213:168-74. doi: 10.1016/j.jconrel.2015.07.007. PMID 26184051.

Marcano DC, Shin CS, Lee B, Isenhart LC, Liu X, Li F, Jester JV, Pflugfelder SC, Simpson J, Acharya G. Synergistic cysteamine delivery nanowafer as an efficacious treatment modality for corneal cystinosis. Mol Pharm. 2016 Oct 3;13(10):3468-77. doi: 10.1021/acs.molpharmaceut.6b00488. PMID 27571217.

Wong FSY, Tsang KK, Lo ACY. Delivery of therapeutics to posterior eye segment: cell-encapsulating systems. Neural Regen Res. 2017 Apr;12(4):576-77. doi: 10.4103/1673-5374.205093, PMID 28553333.

Emerich DF, Thanos CG. NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther. 2008 Oct;10(5):506-15. PMID 18830926.

Kuno N, Fujii S. Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging. 2010 Feb 1;27(2):117-34. doi: 10.2165/11530970-000000000-00000, PMID 20104938.

Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. BioImpacts. 2016;6(1):49-67. doi: 10.15171/bi.2016.07. PMID 27340624.

Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008 May;29(13):2113-24. doi: 10.1016/j.biomaterials.2007.12.048, PMID 18261792.

Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007 Sep;48(9):4038-43. doi: 10.1167/iovs.07-0066, PMID 17724185.

Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev. 2018 Feb 15;126:96-112. doi: 10.1016/j.addr.2017.09.008. PMID 28916492.

Song HB, Lee KJ, Seo IH, Lee JY, Lee SM, Kim JH, Kim JH, Ryu W. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. J Control Release. 2015 Jul 10;209:272-9. doi: 10.1016/j.jconrel.2015.04.041. PMID 25937320.

Gilger BC, Abarca EM, Salmon JH, Patel S. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Invest Ophthalmol Vis Sci. 2013 Apr 3;54(4):2483-92. doi: 10.1167/iovs.13-11747, PMID 23532526.

Ustundag Okur N, Homan Gokce E. Lipid nanoparticles for ocular drug delivery. Int J Ophthal Res. 2015;1(3):77-82. doi: 10.17554/j.issn.2409-5680.2015.01.29.

Sanchez Lopez E, Espina M, Doktorovova S, Souto EB, Garcia ML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye- Part I- Barriers and determining factors in ocular delivery. Eur J Pharm Biopharm. 2017;110:70-5. doi: 10.1016/j.ejpb.2016.10.009. PMID 27789358.

Pandey V, Gajbhiye KR, Soni V. Lactoferrin-appended solid lipid nanoparticles of paclitaxel for effective management of bronchogenic carcinoma. Drug Deliv. 2015 Feb;22(2):199-205. doi: 10.3109/10717544.2013.877100, PMID 24467582.

Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol. 2005 Mar;27(2):127-44. doi: 10.1358/mf.2005.27.2.876286, PMID 15834465.

Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM. Solid lipid nanoparticles: emerging colloidal Nano drug delivery systems. Pharmaceutics. 2018 Oct 18;10(4):191. doi: 10.3390/pharmaceutics10040191, PMID 30340327.

Tekade RK, Maheshwari R, Tekade M, Chougule MB. Solid lipid nanoparticles for targeting and delivery of drugs and genes. Nanotechnol-Based Approaches Target Deliv Drugs Genes. 2017:256-86.

Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm. 2016 Dec;109:224-35. doi: 10.1016/j.ejpb.2016.10.015. PMID 27793755.

Wagh VD, Deshmukh OJ. Itraconazole niosomes drug delivery system and its antimycotic activity against Candida albicans. ISRN Pharm. 2012;2012:653465. doi: 10.5402/2012/653465, PMID 23378932.

Jain N, Verma A. Preformulation studies of pilocarpine hydrochloride as niosomal gels for ocular drug delivery. Asian J Pharm Clin Res. 2020:149-55. doi: 10.22159/ajpcr.2020.v13i6.37523.

Rinaldi F, Del Favero E, Moeller J, Hanieh PN, Passeri D, Rossi M, Angeloni L, Venditti I, Marianecci C, Carafa M, Fratoddi I. Hydrophilic silver nanoparticles loaded into niosomes: physical-chemical characterization in view of biological applications. Nanomaterials (Basel). 2019 Aug 17;9(8):1177. doi: 10.3390/nano9081177, PMID 31426465.

Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, Zandieh Doulabi B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: a comprehensive review. Int J Polym Mater Polym Biomater. 2018;67(6):383-400. doi: 10.1080/00914037.2017.1332623.

MS, MS, Panda SP, Buddha S, Kumari PVK, Rao YS. Proniosomes: A vesicular drug delivery system. Int J Curr Pharm Sci. 2021;32-36:32-6. doi: 10.22159/ ijcpr.2021v13i6.1925.

Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, Esposito S, Carafa M. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci. 2014 Mar;205:187-206. doi: 10.1016/j.cis.2013.11.018. PMID 24369107.

Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv. 2021 Jan;18(1):55-71. doi: 10.1080/ 17425247.2020.1822322, PMID 32903034.

Abdelkader H, Ismail S, Hussein A, Wu Z, Al-Kassas R, Alany RG. Conjunctival and corneal tolerability assessment of ocular naltrexone niosomes and their ingredients on the hen’s egg chorioallantoic membrane and excised bovine cornea models. Int J Pharm. 2012 Aug 1;432(1-2):1-10. doi: 10.1016/j.ijpharm.2012.04.063. PMID 22575752.

Shukr MH. Novel in situ gelling ocular inserts for voriconazole-loaded niosomes: design, in vitro characterisation and in vivo evaluation of the ocular irritation and drug pharmacokinetics. J Microencapsul. 2016 Feb;33(1):71-9. doi: 10.3109/02652048.2015.1128489, PMID 26739851.

Shukr MH. Novel in situ gelling ocular inserts for voriconazole-loaded niosomes: design, in vitro characterisation and in vivo evaluation of the ocular irritation and drug pharmacokinetics. J Microencapsul. 2016 Feb;33(1):71-9. doi: 10.3109/02652048.2015.1128489, PMID 26739851.

Abu Hashim II, El-Dahan MS, Yusif RM, Abd-Elgawad AE, Arima H. Potential use of niosomal hydrogel as an ocular delivery system for atenolol. Biol Pharm Bull. 2014;37(4):541-51. doi: 10.1248/bpb.b13-00724. PMID 24694602.

Kaur IP, Singh M, Yadav M, Sandhu SK, Deol PK, Sharma G. Potential of nanomaterials as movers and packers for drug molecules. Solid State Phenom. 2014;222:159-78. doi: 10.4028/www.scientific.net/SSP.222.159.

Kakkar S, Kaur IP. Spanlastics-a novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011 Jul 15;413(1-2):202-10. doi: 10.1016/j.ijpharm.2011.04.027. PMID 21540093.

Sarraf D, Lee DA. The role of iontophoresis in ocular drug delivery. J Ocul Pharmacol. 1994 Spring;10(1):69-81. doi: 10.1089/jop.1994.10.69, PMID 8207346.

Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006 Mar;3(2):275-87. doi: 10.1517/17425247.3.2.275, PMID 16506953.

Barza M, Peckman C, Baum J. Transscleral iontophoresis as an adjunctive treatment for experimental endophthalmitis. Arch Ophthalmol. 1987 Oct;105(10):1418-20. doi: 10.1001/archopht.1987.01060100120040, PMID 3499135.

Barza M, Peckman C, Baum J. Transscleral iontophoresis of cefazolin, ticarcillin, and gentamicin in the rabbit. Ophthalmology. 1986 Jan;93(1):133-9. doi: 10.1016/s0161-6420(86)33780-1, PMID 3951811.

Chopra P, Hao J, Li SK. Sustained-release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J Control Release. 2012 May 30;160(1):96-104. doi: 10.1016/j.jconrel.2012.01.032. PMID 22306336.

Souza JG, Dias K, Silva SA, de Rezende LC, Rocha EM, Emery FS, Lopez RF. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery. J Control Release. 2015 Feb 28;200:115-24. doi: 10.1016/ j.jconrel.2014.12.037. PMID 25553828.

Lam TT, Fu J, Tso MOM. Erratum. Graefe's Arch Clin Exp Ophthalmol. 1992;230(2):199. doi: 10.1007/BF00164665.

Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M. Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther. 2003 Apr;19(2):145-51. doi: 10.1089/108076803321637672, PMID 12804059.

Cohen AE, Assang C, Patane MA, From S, Korenfeld M, Avion Study Investigators. Evaluation of dexamethasone phosphate delivered by ocular iontophoresis for treating noninfectious anterior uveitis. Ophthalmology. 2012 Jan;119(1):66-73. doi: 10.1016/j.ophtha.2011.07.006. PMID 22115712.

Patane MA, Cohen A, From S, Torkildsen G, Welch D, Ousler GW 3rd. Ocular iontophoresis of EGP-437 (dexamethasone phosphate) in dry eye patients: results of a randomized clinical trial. Clin Ophthalmol. 2011;5:633-43. doi: 10.2147/OPTH.S19349. PMID 21629568.

Mehrandish S, Mirzaeei S. A review on ocular novel drug delivery systems of antifungal drugs: functional evaluation and comparison of conventional and novel dosage forms. Adv Pharm Bull. 2021 Jan;11(1):28-38. doi: 10.34172/apb.2021.003, PMID 33747850.

Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993-2007. doi: 10.1016/j.polymer.2008.01.027.

Maharjan P, Cho KH, Maharjan A, Shin MC, Moon C, Min KA. Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. J Pharm Investig. 2019;49(2):215-28. doi: 10.1007/s40005-018-0404-6.

Tyagi P, Barros M, Stansbury JW, Kompella UB. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm. 2013 Aug 5;10(8):2858-67. doi: 10.1021/mp300716t, PMID 23734705.

Sasaki H, Yamamura K, Nishida K, Nakamura J, Ichikawa M. Delivery of drugs to the eye by topical application. Prog Retin Eye Res. 1996;15(2):583-620. doi: 10.1016/1350-9462(96)00014-6.

Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005 Nov 3;57(11):1595-639. doi: 10.1016/j.addr.2005.07.005. PMID 16198021.

Robinson JR, Mlynek GM. Bioadhesive and phase-change polymers for ocular drug delivery. Adv Drug Deliv Rev. 1995;16(1):45-50. doi: 10.1016/0169-409X(95)00013-W.

Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47-64. doi: 10.5497/wjp.v2.i2.47. PMID 25590022.

Sheshala R, Kok YY, Ng JM, Thakur RR, Dua K. In situ gelling ophthalmic drug delivery system: an overview and its applications. Recent Pat Drug Deliv Formul. 2015;9(3):237-48. doi: 10.2174/1872211309666150724101227, PMID 26205681.

El-Kamel AH. In vitro and in vivo evaluation of pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2002 Jul 8;241(1):47-55. doi: 10.1016/s0378-5173(02)00234-x, PMID 12086720.

Ma WD, Xu H, Wang C, Nie SF, Pan WS. Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm. 2008 Feb 28;350(1-2):247-56. doi: 10.1016/j.ijpharm.2007.09.005. PMID 17961940.

Agrawal AK, Das M, Jain S. In situ gel systems as ’smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv. 2012 Apr;9(4):383-402. doi: 10.1517/17425247.2012.665367, PMID 22432690.

Rahic O, Tucak A, Omerovic N, Sirbubalo M, Hindija L, Hadziabdic J, Vranic E. Novel drug delivery systems fighting glaucoma: formulation obstacles and solutions. Pharmaceutics. 2020 Dec 26;13(1):28. doi: 10.3390/pharmaceutics13010028, PMID 33375224.

Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013 Jan;4(1):9-17. doi: 10.4103/2231-4040.107495, PMID 23662277.

Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, Lu J, Li J, Du S, Liu Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019 Jan;14(1):1-15. doi: 10.1016/j.ajps.2018.04.008. PMID 32104434.

Almeida H, Amaral MH, Lobão P, Sousa Lobo JM. Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Deliv. 2013 Sep;10(9):1223-37. doi: 10.1517/17425247.2013.796360, PMID 23688342.

Escobar Chavez JJ, Lopez Cervantes M, Naik A, Kalia YN, Quintanar Guerrero D, Ganem Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9(3):339-58. PMID 17207417.

Desai SD, Blanchard J. In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine. J Pharm Sci. 1998 Feb;87(2):226-30. doi: 10.1021/js970090e, PMID 9519158.

Qian Y, Wang F, Li R, Zhang Q, Xu Q. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide. Drug Dev Ind Pharm. 2010 Nov;36(11):1340-7. doi: 10.3109/03639041003801893, PMID 20849349.

Nesseem DI. Ophthalmic delivery of sparfloxacin from in situ gel formulation for the treatment of experimentally induced bacterial keratitis. Drug Test Anal. 2011 Feb;3(2):106-15. doi: 10.1002/dta.170, PMID 21322120.

Graham S, Marina PF, Blencowe A. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym. 2019 Mar 1;207:143-59. doi: 10.1016/j.carbpol.2018.11.053. PMID 30599994.

Mayol L, Quaglia F, Borzacchiello A, Ambrosio L, La Rotonda MI. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm. 2008 Sep;70(1):199-206. doi: 10.1016/j.ejpb.2008.04.025. PMID 18644705.

Al Khateb K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, Lau WM, Khutoryanskiy VV. In situ gelling systems based on pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm. 2016 Apr 11;502(1-2):70-9. doi: 10.1016/j.ijpharm.2016.02.027. PMID 26899977.

Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, Lu J, Li J, Du S, Liu Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019 Jan;14(1):1-15. doi: 10.1016/j.ajps.2018.04.008. PMID 32104434.

Almeida H, Amaral MH, Lobao P, Lobo JM. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today. 2014 Apr;19(4):400-12. doi: 10.1016/j.drudis.2013.10.001. PMID 24120893.

Pique N, Gomez Guillen MDC, Montero MP. Xyloglucan, a plant polymer with barrier protective properties over the mucous membranes: an overview. Int J Mol Sci. 2018 Feb 27;19(3):673. doi: 10.3390/ijms19030673, PMID 29495535.

Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm. 2001 Oct 23;229(1-2):29-36. doi: 10.1016/s0378-5173(01)00825-0, PMID 11604255.

Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013 Jan;4(1):9-17. doi: 10.4103/2231-4040.107495, PMID 23662277.

Majeed A, Khan NA. Ocular in situ gel: an overview. J Drug Delivery Ther. 2019;9(1):337-47. doi: 10.22270/jddt.v9i1.2231.

Lin HR, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release. 2000 Dec 3;69(3):379-88. doi: 10.1016/s0168-3659(00)00329-1, PMID 11102678.

Nanjawade BK, Manvi FV, Manjappa AS. In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release. 2007 Sep 26;122(2):119-34. doi: 10.1016/j.jconrel.2007.07.009. PMID 17719120.

Singh K, Verma S. Novel polymeric in situ gel-forming system for ophthalmic drug delivery. Int J Drug Deliv Technol. 2017;4(1). doi: 10.25258/ijddt.v4i1.8854.

Gupta C, Juyal V, Nagaich U. Formulation, optimization, and evaluation of in-situ gel of moxifloxacin hydrochloride for ophthalmic drug delivery. Int J App Pharm. 2019:147-58. doi: 10.22159/ijap.2019v11i4.30388.

Wu H, Liu Z, Peng J, Li L, Li N, Li J, Pan H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm. 2011 May 30;410(1-2):31-40. doi: 10.1016/j.ijpharm.2011.03.007. PMID 21397671.

Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G, Jain S. Development and characterization of 99mTc-timolol maleate for evaluating efficacy of in situ ocular drug delivery system. AAPS PharmSciTech. 2009;10(2):540-6. doi: 10.1208/s12249-009-9238-x, PMID 19424806.

Upadhayay P, Kumar M, Pathak K. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: optimization, ocular irritancy and corneal toxicity. Iran J Pharm Res. 2016;15(1):3-22. PMID 27610144.

Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016;6:1-6. doi: 10.1016/j.rinphs.2015.06.001. PMID 26949596.

Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: Precorneal retention and in vivo pharmacodynamic study. Int J Pharm. 2011 Jun 15;411(1-2):78-85. doi: 10.1016/j.ijpharm.2011.03.043. PMID 21453763.

Sultana Y, Aqil M, Ali A. Ion-activated, gelrite-based in situ ophthalmic gels of pefloxacin mesylate: comparison with conventional eye drops. Drug Deliv. 2006 May–Jun;13(3):215-9. doi: 10.1080/10717540500309164, PMID 16556574.

Balasubramaniam J, Kant S, Pandit JK. In vitro and in vivo evaluation of the gelrite gellan gum-based ocular delivery system for indomethacin. Acta Pharm. 2003 Dec;53(4):251-61. PMID 14769232.

Rupenthal ID, Alany RG, Green CR. Ion-activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface. Mol Pharm. 2011 Dec 5;8(6):2282-90. doi: 10.1021/mp200140e, PMID 21985532.

Cohen S, Lobel E, Trevgoda A, Peled Y. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Control Release. 1997;44(2-3):201-8. doi: 10.1016/S0168-3659(96)01523-4.

Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci. 2017 Jun 15;104:302-14. doi: 10.1016/j.ejps.2017.04.013. PMID 28433750.

Kim HM, Woo SJ. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics. 2021 Jan 15;13(1):108. doi: 10.3390/pharmaceutics13010108, PMID 33467779.

Yadav HK, Almokdad AA, Shaluf SI, Debe MS. Polymer-based nanomaterials for drug-delivery carriers. Nanocarriers Drug Deliv. 2019:531-56.

Nasimi P, Haidari M. Medical use of nanoparticles. Int J Green Nanotechnol. 2013;1:1-5. doi: 10.1177/1943089213506978.

Bhagav P, Upadhyay H, Chandran S. Brimonidine tartrate-eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech. 2011 Dec;12(4):1087-101. doi: 10.1208/s12249-011-9675-1, PMID 21879393.

Pignatello R, Ricupero N, Bucolo C, Maugeri F, Maltese A, Puglisi G. Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech. 2006 Mar 24;7(1):E27. doi: 10.1208/pt070127, PMID 16584158.

Ibrahim HK, El-Leithy IS, Makky AA. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm. 2010 Apr 5;7(2):576-85. doi: 10.1021/mp900279c, PMID 20163167.

Agnihotri SM, Vavia PR. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomedicine. 2009 Mar;5(1):90-5. doi: 10.1016/j.nano.2008.07.003. PMID 18823824.

Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010 Apr;6(2):324-33. doi: 10.1016/j.nano.2009.10.004. PMID 19857606.

Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target. 2011 Jul;19(6):409-17. doi: 10.3109/1061186X.2010.504268, PMID 20678034.

Nagarwal RC, Kumar R, Pandit JK. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci. 2012 Nov 20;47(4):678-85. doi: 10.1016/j.ejps.2012.08.008. PMID 22922098.

Retraction notice to ’Enhanced antiproliferative activity of carboplatin loaded chitosan-alginate nanoparticles in retinoblastoma cell line’. Acta Biomater. 2013 Jun;9(6):7075. doi: 10.1016/j.actbio.2013.02.025, PMID 23802318.

Sharma UK, Verma A, Prajapati SK, Pandey H, Pandey AC. In vitro, in vivo and pharmacokinetic assessment of amikacin sulphate laden polymeric nanoparticles meant for controlled ocular drug delivery. Appl Nanosci. 2015;5(2):143-55. doi: 10.1007/s13204-014-0300-y.

Qiu F, Meng T, Chen Q, Zhou K, Shao Y, Matlock G, Ma X, Wu W, Du Y, Wang X, Deng G, Ma JX, Xu Q. Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Mol Pharm. 2019 May 6;16(5):1958-70. doi: 10.1021/acs.molpharmaceut.8b01319. PMID 30912953.

Musumeci T, Bucolo C, Carbone C, Pignatello R, Drago F, Puglisi G. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int J Pharm. 2013 Jan 20;440(2):135-40. doi: 10.1016/j.ijpharm.2012.10.014. PMID 23078856.

Soni V, Pandey V, Tiwari R, Asati S, Tekade RK. Design and evaluation of ophthalmic delivery formulations. Basic Fundam Drug Deliv. 2019:473-538.

Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020 Jan 15;24:3. doi: 10.1186/s40824-020-0184-8, PMID 31969986.

Weinreb RN, Jani R. A novel formulation of an ophthalmic beta-adrenoceptor antagonist. J Parenter Sci Technol. 1992 Mar–Apr;46(2):51-3. PMID 1588458.

Ramesh Y, Kothapalli CB, Reddigari JRP. A novel approaches on ocular drug delivery system. J Drug Delivery Ther. 2017;7(6). doi: 10.22270/jddt.v7i6.1512.

Patton TF, Robinson JR. Ocular evaluation of polyvinyl alcohol vehicle in rabbits. J Pharm Sci. 1975 Aug;64(8):1312-16. doi: 10.1002/jps.2600640811, PMID 1151703.

Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, Yang H. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine. 2012 Jul;8(5):776-83. doi: 10.1016/j.nano.2011.08.018. PMID 21930109.

Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, Gurny R, BenEzra D, Behar Cohen F. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006 Nov 15;58(11):1182-202. doi: 10.1016/j.addr.2006.07.026. PMID 17107737.

Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008 Feb;13(3-4):135-43. doi: 10.1016/j.drudis.2007.11.002. PMID 18275911.

Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010 Oct; 27(10):2043-53. doi: 10.1007/s11095-010-0159-x., PMID: 20535532.

Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y. Drug delivery from ocular implants. Expert Opin Drug Deliv. 2006 Mar;3(2):261-73. doi: 10.1517/17425247.3.2.261., PMID: 16506952.

Published

07-05-2022

How to Cite

KAUSHIK, A., MAZUMDER, R., PADHI, S., MAZUMDER, A., BUDHORI, R., MANORMA, & DAS PAUL, S. (2022). NOVEL APPROACHES IN OCULAR DRUG DELIVERY-A REVOLUTION. International Journal of Applied Pharmaceutics, 14(3), 1–11. https://doi.org/10.22159/ijap.2022v14i3.44045

Issue

Section

Review Article(s)