• MALLIKARJUN P. N. Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam 530049, India
  • ANUSHA S. Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam 530049, India
  • SAI NANDINI V. Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam 530049, India
  • RAMA RAO B. Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam 530049, India
  • KAMALA KUMARI P. V. Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam 530049, India
  • SRINIVASA RAO Y. Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam 530049, India


Hydrogels are water-swollen 3D networks made of polymers, proteins, small molecules, or colloids. They are porous in structure and entrap/encapsulate large amounts of therapeutic agents and biopharmaceuticals. Their unique properties like biocompatibility, biodegradability, sensitivity to various stimuli, and the ability to be easily conjugated with hydrophilic and hydrophobic drugs with a controlled-release profile make hydrogels a smart drug delivery system. Smart hydrogel systems with various chemically and structurally responsive moieties exhibit responsiveness to external stimuli including temperature, pH, ionic concentration, light, magnetic fields, electrical fields, and chemical and biological stimuli with selected triggers includes polymers with multiple responsive properties have also been developed elegantly combining two or more stimuli-responsive mechanisms. This article emphasized the types, features, and various stimuli systems that produce responsive delivery of drugs.

Keywords: Stimuli-responsive, Smart hydrogel, Triggers, Environment-sensitive, Biocompatibility, Biodegradability


1. Shivani PS, Ajeet G, Shilpa B, Pankaj G, Hydrogels: Introduction, Preparation, Characterization and Applications, International Journal of Research Methodology, (2015); 1(1): 47-71.
2. Sowjanya P, Boddu VK, Ajay BP, A Review Article On Hydrogels, International Journal of Research in Pharmaceutical and Nano Sciences, (2013); 2(5): 548- 553.
3. Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823
4. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75
5. P. Colombo, Swelling-controlled release in hydrogel matrices for oral route, Adv. Drug Deliv. Rev. 11 (1993) 37–57.
6. hn, S.-K., Kasi, R. M., Kim, S.-C., Sharma, N. and Zhou, Y. (2008). Stimuli-responsive polymer gels. Soft Matter, 4, 1151–1157.
7. Peppas, N.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46.
8. Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C. C., Purnawali, H., et al.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)
9. Lin, C.C., Metters, A.T.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58, 1379–1408 (2006)
10. Zaman M, Siddique W, Waheed S, Muhammad SS, Mahmood A, Qureshi J et al. International Journal of Biology, Pharmacy and Allied Sciences. 2015; 4(12):6581-6603
11. Zhu J, Marchant R. E, Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices2011;8: 607-626.
12. Zhu J, Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31: 4639-4656.
13. Chung HK, Park TG. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today. 2009;4(5):429–437.
14. Liu SQ, Tay R, Khan M, Ee PLR, Hedrick JL, Yang YY. Synthetic hydrogels for controlled stem cell differentiation. Soft Matter. 2010;6(1):67–81.
15. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21(32–33):3307–3329.
16. Nguyen TK, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23(22):4307–4314
17. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliver Rev. 2002;43(1):3–12.
18. Kharkar PM, Kiick KL, Kloxin AM (2013) Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 42(17):7335–7372
19. Bajpai, A.K., S.K. Shukla, S. Bhanu and S. Kankane. 2008. Responsive polymers in controlled drug delivery. Progress in Polymer Science. 33: 1088–1118.
20. Gupta, P., K. Vermani and S. Garg. 2002. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today. 7: 569–579.
21. Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications.In:Mendez-VilasA,Solano-Martin A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center Publication, Spain. pp 108–120. ISBN: 978-84-942134-8-9
22. Jarry C, Leroux JC, Haeck J, Chaput C (2002) Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-?-glycerophosphate systems. Chem Pharm Bull 50(10):1335–1340
23. Gil, E.S. and S.M. Hudson. 2004. Stimuli-responsive polymers and their bioconjugates. Progress in Polymer Science. 29: 1173–1222.
24. Qiu, Y. and K. Park. 2012. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews. 64: 49–60.
25. Chaterji, S., I.K. Kwon and K. Park. 2007. Smart polymeric gels: redefining the limits of biomedical devices. Progress in Polymer Science. 32: 1083–1122.
26. Cheng, X., Y. Jin, T. Sun, R. Qi, B. Fan and H. Li. 2015. Oxidation-and thermo-responsive poly (N-isopropylacrylamide-co-2-hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery. RSC Advances. 5: 4162–4170.
27. Timko, B. P.; Dvir, T.; Kohane, D. S. Remotely triggerable drug delivery systems. Adv. Mater. 2010, 22, 4925?4943.
28. Timko, B. P.; Arruebo, M.; Shankarappa, S. A.; McAlvin, J. B.; Okonkwo, O. S.; Mizrahi, B.; Stefanescu, C. F.; Gomez, L.; Zhu, J.; Zhu, A.; Santamaria, J.; Langer, R.; Kohane, D. S. Near-infraredactuated devices for remotely controlled drug delivery. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1349.
29. Stimuli-Responsive Hydrogels: An Interdisciplinary Overview - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/The-schematic-representation-of-thermoresponsive-hydrogel-formation-loaded-with-drug_fig1_328878299 [accessed 11 Jun, 2020]
30. Serra, L.; Doménech, J.; Peppas, N.A. Drug transport mechanisms and release kinetics from molecularly designed poly (acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 2006, 27, 5440–5451. [CrossRef] [PubMed]
31. N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, Stimuli-responsive hydrogels in drug delivery and tissue engineering, Drug Deliv. 23 (3) (2016) 748–770, https://doi. org/10.3109/10717544.2014.940091.
32. J. Wiedemair, M.J. Serpe, J. Kim, J.-F. Masson, L.A. Lyon, B. Mizaiko?, C. Kranz, In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles, Langmuir 23 (1) (2007) 130–137, https://doi.org/10.1021/ la061288u.
33. 1 E. N. R. Koningsveld and W. H. Stockmayer, Polymer Phase Diagrams: A Textbook, Oxford Univ. Press, 2001.
34. SannaR,Fortunati E,AlzariV,NuvoliD,TerenziA,CasulaMF,KennyJM,Mariani A(2013) Poly (N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20(5):2393–2402
35. Kumar, A., Srivastava, A., Galaev, I. Y. and Mattiasson, B. (2007). Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science ,
32 , 1205–1237.
36. Ge, J.; Neofytou, E.; Cahill, T. J.; Beygui, R. E.; Zare, R. N. Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano 2012, 6, 227?233.
37. Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomaterials 9(4):1208–1213
38. Kim J, Wang N, Chen Y, Lee SK, Yun GY (2007) Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14(3):217–223
39. Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC (2015) In situ synthesis of magnetic ?eld-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules 16(8):2522–2528
40. Hua, M. Y.; Liu, H. L.; Yang, H. W.; Chen, P. Y.; Tsai, R. Y.; Huang, C. Y.; Tseng, I. C.; Lyu, L. A.; Ma, C. C.; Tang, H. J.; Yen, T. C.; Wei, K. C. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 2011, 32, 516?527.
41. Recent Advances on Magnetic Sensitive Hydrogels in Tissue Engineering - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/The-schematic-diagram-of-the-main-three-routes-for-the-synthesis-of-the-magnetic_fig1_339746312 [accessed 29 Jun, 2020]
42. Cai, K.; Luo, Z.; Hu, Y.; Chen, X.; Liao, Y.; Yang, L.; Deng, L. Magnetically Triggered Reversible Controlled Drug Delivery from Microfabricated Polymeric Multireservoir Devices. Adv. Mater. 2009, 21, 4045?4049.
43. alvarez-Lorenzo, C., Bromberg, L. and Concheiro, A. (2009). Light-sensitive intelligent drug delivery systems. Photochemistry and Photobiology , 85 , 848–860.
44. zhao, Y.-L. and Stoddart, J. F. (2009). Azobenzene-based light-responsive hydrogel system. Langmuir , 25 , 8442–8446.
45. A. Suzuki, T. Tanaka, Phase transition in polymer gels induced by visible light, Nature 346 (1990) 345–347.
46. A. Suzuki, T. Ishii, Y. Maruyama, Optical switching in polymer gels, J. Appl. Phys. 80 (1996) 131–136.
47. T. Manouras, M. Vamvakaki, Field responsive materials: photo-, electro-, magnetic-and ultrasound-sensitive polymers, Polym. Chem. 8 (1) (2017) 74–96, https://doi.org/10.1039/C6PY01455K.
48. Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N. Ultrasoundtriggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J. Controlled Release 2016, 241, 144?163.
49. Ahmadi, F.; McLoughlin, I. V.; Chauhan, S.; ter-Haar, G. Bioeffects and safety of low-intensity, low-frequency ultrasonic exposure. Prog. Biophys. Mol. Biol. 2012, 108, 119?138.
50. Huang D, Sun M, Bu Y, Luo F, Lin C, Lin Z, et al. Microcapsule-embedded hydrogel patches for ultrasound responsive and enhanced transdermal delivery of diclofenac sodium. J Mater Chem B [Internet]. 2019;7(14):2330–7. Available from: http://dx.doi.org/10.1039/C8TB02928H
51. Pereira TA, Ramos DN, Lopez RFV. Hydrogel increases localized transport regions and skin permeability during low frequency ultrasound treatment. Sci Rep. 2017;7(September 2016):1–10.
52. Taghizadeh, B., S. Taranejoo, S.A. Monemian, Z.S. Moghaddam, K. Daliri, H. Derakhshankhah et al. 2015. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Delivery. 22: 145–155.
53. Jianqi, F.; Lixia, G. PVA/PAA thermo-crosslinking hydrogel ?ber: Preparation and pH-sensitive properties in electrolyte solution. Eur. Polym. J. 2002, 38, 1653–1658. [CrossRef]
54. Podual, K., F.J. Doyle and N.A. Peppas. 2000. Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase. Polymer. 41: 3975–3983.
55. Gupta, P., K. Vermani and S. Garg. 2002. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today. 7: 569–579.
56. Risbud, M.V., A.A. Hardikar, S.V. Bhat and R.R. Bhonde. 2000. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. Journal of Controlled Release. 68: 23–30.
57. Oishi M, Nagasaki Y (2007) Synthesis, characterization, and biomedical applications of core– shell-type stimuli-responsive nanogels—Nanogel composed of poly[2-(N, N-diethylamino) ethyl methacrylate] core and PEG tethered chains. React Func Polym 67:1311–1329
58. V. Stadler, R. Kirmse, M. Beyer, F. Breitling, T. Ludwig, F.R. Bischoff, PEGMA/ MMA copolymer graftings: generation, protein resistance, and a hydrophobic domain, Langmuir 24 (2008) 8151e8157.
59. B.L. Rivas, S.A. Pooley, E.D. Pereira, A. Maureira, Water-soluble polyelectrolytes with metal ion removal ability by using the liquid phase based retention technique, Macromol. Symp. 245e246 (1) (2006) 116.
60. https://ars.els-cdn.com/content/image/1-s2.0-S1359644602022559-gr4.jpg
61. Peppas, N.A., K.M. Wood and J.O. Blanchette. 2004. Hydrogels for oral delivery of therapeutic proteins. Expert Opinion on Biological Therapy. 4: 881–887.
62. Cevik, O., D. Gidon and S. Kizilel. 2015. Visible-light-induced synthesis of pH-responsive composite hydrogels for controlled delivery of the anticonvulsant drug pregabalin. Acta Biomaterialia. 11: 151–161.
63. L. Xu,L. Qiu,Y. Sheng, Y. Sun, L. Deng, X. Li, M. Bradley, R. Zhang, Biodegradable pH-responsive hydrogels for controlled dual-drug release, J. Mater. Chem. B 6 (3) (2018) 510–517, https://doi.org/10.1039/C7TB01851G.
64. E. Cabane, X. Zhang, K. Langowska, C.G. Palivan, W. Meier, Stimuli-responsive polymers and their applications in nanomedicine, Biointerphases 7 (1) (2012) 9, https://doi.org/10.1007/s13758-011-0009-3.
65. P. Li, S. Wang, H. Chen, S. Zhang, S. Yu, Y. Li, M. Cui, W. Pan, X. Yang, A novel ion-activated in situ gelling ophthalmic delivery system based on ?-carrageenan for acyclovir, Drug Dev. Ind. Pharm. 44 (5) (2018) 829–836, https://doi.org/10. 1080/03639045.2017.1414232.
66. Bawa, P., V. Pillay, Y.E. Choonara and L.C. du Toit. 2009. Stimuli-responsive polymers and their applications in drug delivery. Biomedical Materials. 4: 022001.
67. R. Chandrawati, Enzyme-responsive polymer hydrogels for therapeutic delivery, Exp. Biol. Med. 241 (9) (2016) 972–979, https://doi.org/10.1177/ 1535370216647186.
68. J.D. Bronzino, D.R. Peterson, Molecular, Cellular, and Tissue Engineering, CRC Press, 2018.
69. Ehrick, J. D., Luckett, M. R., Khatwani, S., Wei, Y., Deo, S. K., Bachas, L. G. and Daunert, S. (2009). Glucose responsive hydrogel networks based on protein recognition. Macromolecular Bioscience , 9 , 864–868.
70. Kim, J. J. and Park, K. (2001). Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. Journal of Controlled Release , 77 , 39–47.
71. traitel, T., Cohen, Y. and Kost, J. (2000). Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials , 21 , 1679–1687.
72. T. Miyata, N. Asami, T. Uragami, A reversibly antigen responsive hydrogel, Nature 399 (1999) 766–769.
73. T. Miyata, T. Uragami, K. Nakamae, Biomolecule – sensitive hydrogels, Adv. Drug Deliv. Rev. 54 (2002) 79- 98.
74. Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems — a passing fad or the future? Adv Drug Deliv Rev [Internet]. 2018;132:139–68. Available from: https://doi.org/10.1016/j.addr.2018.05.006
75. Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev [Internet]. 2018;126:113–26. Available from: https://doi.org/10.1016/j.addr.2017.12.017
76. Wang X, Qin XH, Hu C, Terzopoulou A, Chen XZ, Huang TY, et al. 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers. Adv Funct Mater. 2018;28(45):1–8.
77. Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Adv Healthc Mater. 2017;6(22):1–20.
78. Yanhua L, Wenping W, Jianhong Y, Chengming Z, Jin S (2013) pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharm Sci 8:159–167
79. Bierbrauer F. Hydrogel drug delivery: diffusion models. Internal Report. ; 2005 [accessed September 2013].
80. Peppas NA, Lowman AM. Hydrogels. In: Mathiowitz E, editor. Encyclopedia of controlled drug delivery. New York: Wiley; 1999. p. 397–418
81. J. Li, D. J. Mooney, Designing hydrogels for controlled drug delivery, Nat. Rev. Mater. 1 (2016) 16071.
82. Huabing Chen , Xueling Chang, Microemulsion-based hydrogel formulation of ibuprofen for topical delivery 2006 Jun 6;315(1-2):52-8.doi: 10.1016/j.ijpharm.2006.02.015. Epub 2006 Apr 5.
83. Sabale V, Vora S. Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharma Investig 2012;2:140-9.
84. H. Nazar a, M. Roldo a* Thermosensitive hydrogels for nasal drug delivery: The formulation and characterisation of systems based on N-trimethyl chitosan chloride European Journal of Pharmaceutics and Biopharmaceutics 77 (2011) 225–232.
85. S. Sahoo, N.R. Pani, S.K. Sahoo, Microemulsion based topical hydrogel of sertaconazole: Formulation, characterization and evaluation, Colloids and Surfaces B: Biointerfaces (2014), http://dx.doi.org/10.1016/j.colsurfb.2014.05.022
86. Eunhee Cho, Ken Webb et al Formulation and characterization of poloxamine-based hydrogels as tissue sealants Acta Biomaterialia 8 (2012) 2223–2232, http://dx.doi.org/10.1016/j.actbio.2012.03.003
87. Guoming Sun , Xian-Zheng Zhang, Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity, J Mater Sci: Mater Med (2007) 18:1563–1577 DOI 10.1007/s10856-007-3030-9
88. Bendtsen ST, Quinnell SP, Wei M. 2017. Development of a novel alginate-polyvinyl alcoholhydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res Part A 2017:105A:1457–1468
89. Basavaraj K. Nanjwade , Rucha V. Deshmukh , Formulation and evaluation of micro hydrogel of Moxifloxacin hydrochloride, Eur J Drug Metab Pharmacokinet (2012) 37:117–123 DOI 10.1007/s13318-011-0070-9.
90. M. Glavas Dodov et al.: Formulation and evaluation of diazepam hydrogel for rectal administration, Acta Pharm. 55 (2005) 251–261
91. Biswajit Biswal1*, Nabin Karna1 , Formulation and Evaluation of Microemulsion Based Topical Hydrogel Containing Lornoxicam, Journal of Applied Pharmaceutical Science Vol. 4 (12), pp. 077-084, December, 2014
92. Devi Lalitha Gatiganti, Madhavi Harika Srimathkandala (2016) Formulation and Evaluation of Oral Natural Polysaccharide Hydrogel Microbeads of Irbesartan, Analytical Chemistry Letters, 6:4, 334-344, DOI: 10.1080/22297928.2016.1209427
93. Emmanuel O. Akala et al, Novel pH-sensitive hydrogels with adjustable swelling kinetics, Biomaterials 19 (1998) 1037—1047
94. Hu Yang, Weiyuan John Kao, (2206) Thermoresponsive Gelatin/Monomethoxy Poly(Ethylene Glycol)– Poly(D,L-lactide) Hydrogels: Formulation, Characterization, and Antibacterial Drug Delivery, Pharmaceutical Research, Vol. 23, No. 1, January 2006, DOI: 10.1007/s11095-005-8417-z.
95. Azizullah, Nisar-ur-Rehman, (2016): Novel gelatin-polyoxometalate based self-assembled pH responsive hydrogels: formulation and in vitro characterization, Designed Monomers and Polymers, DOI: 10.1080/15685551.2016.1209629
96. Sun Namkung & Chih-Chang Chu (2007) Partially biodegradable temperatureand pH-responsive poly(N-isopropylacrylamide)/dextran-maleic acid hydrogels: formulation and controlled drug delivery of doxorubicin, Journal of Biomaterials Science, Polymer Edition, 18:7, 901-924, DOI: 10.1163/156856207781367701
97. Lihui Weng, Rheological Characterization of in Situ Crosslinkable Hydrogels Formulated from Oxidized Dextran and N-Carboxyethyl Chitosan, Biomacromolecules 2007, 8, 1109-1115
98. A. Aka-Any-Grah et al, Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids, European Journal of Pharmaceutics and Biopharmaceutics 76 (2010) 296–303, doi:10.1016/j.ejpb.2010.07.004
99. Torres-Lugo and Peppas, Molecular Design and in Vitro Studies of Novel pH-Sensitive Hydrogels for the Oral Delivery of Calcitonin, Macromolecules 1999, 32, 6646-6651
100. D. Das, S. Pal, Dextrin/poly (HEMA): pH responsive porous hydrogel for controlled release of ciprofloxacin, International Journal of Biological Macromolecules (2014), http://dx.doi.org/10.1016/j.ijbiomac.2014.08.007
101. N. Vishal Gupta* and H.G. Shivakumar, Preparation and Characterization of Superporous Hydrogels as pHSensitive Drug Delivery System for Pantoprazole Sodium, Current Drug Delivery, 2009, 6, 505-510
102. Anca Onaciu , Raluca,(2019) Hydrogels Based Drug Delivery Synthesis, Characterization and Administration, Pharmaceutics 2019, 11, 432; doi:10.3390/pharmaceutics11090432
103. Bindu Sri. M, Ashok V and Arkendu chatterjee, As A Review on Hydrogels as Drug Delivery in the Pharmaceutical Field International Journal of pharmaceutical and Chemical Sciences. 2012;1: 642- 661.
104. Kalshetti PP, Rajendra V, Dixit DP, Parekh PP. Hydrogels as a Drug Delivery System and Applications: A Review, International Journal of Pharmacy and Pharmaceutical Sciences. 2012; 4(1):1-7.
105. Enrica C, Vitaliy VK. Biomedical applications of hydrogels: A review of patents and commercial products, European Polymer Journal. 2015; 65:252-267.
106. Xu, J.; Tam, M.; Samaei, S.; Lerouge, S.; Barralet, J.; Stevenson, M.M.; Cerruti, M. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 2017, 48, 247–257.
107. Syed KHG, Saphwan AA, Glyn OP. Hydrogels: Methods of Preparation, Characterisation and Applications, Progress in Molecular and Environmental Bioengineering, 2011, 118-120.
108. Anisha Singh, Pramod Kumar Sharma,Vipin Kumar Garg, Garima Garg, Hydrogels: A review. International Journal of Pharmaceutical Sciences Review and Research. 2010; 4: 97-105.
109. M. Amiji, R. Tailor, M.-K. Ly, J. Goreham, Gelatin poly(ethylene oxide) semi-interpenetrating polymer network with pH-sensitive swelling and enzyme-degradable properties for oral drug delivery, Drug Dev. Ind. Pharm. 23 (1997) 575-582.
110. Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017, 5, 17014.
76 Views | 113 Downloads
How to Cite
P. N., M., S., A., V., S. N., B., R. R., P. V., K. K., & Y., S. R. (2021). HYDROGEL: RESPONSIVE STRUCTURES FOR DRUG DELIVERY. International Journal of Applied Pharmaceutics, 13(1), 65-76. https://doi.org/10.22159/ijap.2021v13i1.39507
Review Article(s)