A Comprehensive review on Role of Inulin

  • PK Kulkarni Kulkarni Professor
  • C. Sai Kishan Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, S. S. Nagara, Mysuru-570015, Karnataka, India

Abstract

Inulin is a versatile, water soluble polysaccharide that is commonly available in nature. In the pharmaceutical industry, the non-digestible function of inulin has made it attractive. Inulin is granted with GRAS status by the FDA and more than 30,000 plants in nature store inulin as a carbohydrate. The chicory is the key plant source of inulin out of all sources. It can be used as the sugar or fat replacer in the processed foods to influence the desirable characteristics. Good biocompatibility,essential chemical properties and a wide variety of bioactivities have rendered inulin an outstanding natural nutrient. Regulating blood sugar, antioxidant, anticancer is some of the biological activities of inulin. Inulin can also be a carrier for colon/tumor targeting, as only specific enzymes in the colon hydrolyse the inulin.It allows the growth of micro-flora, the good bacteria in the gut. Inulin is considered as a prebiotic as it is fermented by bacteria that normalize the colon. This review offers an in-depth insight into its novel Pharmaceutical applicationsas well as sources, processing, physicochemical propertiesand its nutritional and physiological activities. The chemically modified inulin is gaining a specific interest in the pharmaceutical field with its outstanding properties which is discussed in this review.

Keywords: Key words: Inulin; Pharmaceutical applications; Targeted drug delivery; prebiotics

References

1. Niness KR. BB INULIN TQ 1.pdf. Jouranl Nutr. 1999;129:1402–6.
2. Clark DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J Pharm Sci. 1999;88:807–14.
3. Franck A. Technological functionality of inulin and oligofructose. Br J Nutr. 2002;87:S287–91.
4. Watzl B, Girrbach S, Roller M. Inulin, oligofructose and immunomodulation. Br J Nutr. 2005;93:S49–55.
5. Roberfroid MB. Introducing inulin-type fructans. Br J Nutr. 2005;93:S13–25.
6. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, et al. Inulin: Properties, health benefits and food applications. Carbohydr Polym [Internet]. 2016;147:444–54.
7. Jiménez-Sánchez M, Pérez-Morales R, Goycoolea FM, Mueller M, Praznik W, Loeppert R, et al. Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties. Carbohydr Polym [Internet]. 2019;215(March):160–9. Available from: https://doi.org/10.1016/j.carbpol.2019.03.060
8. Roberfroid MB, Van Loo JAE, Gibson GR. The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr. 1998;128(1):11–9.
9. Roberfroid MB. Functional foods: concepts and application to inulin and oligofructose. Br J Nutr. 2002;87(S2):S139–43.
10. Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M. Inulin and oligofructose as dietary fiber: A review of the evidence. Crit Rev Food Sci Nutr. 2001;41(5):353–62.
11. Ni D, Xu W, Zhu Y, Zhang W, Zhang T, Guang C, et al. Inulin and its enzymatic production by inulosucrase: Characteristics, structural features, molecular modifications and applications. Biotechnol Adv. 2019;37(2):306–18.
12. Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, et al. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr Polym [Internet]. 2020;246:116589. Available from: https://doi.org/10.1016/j.carbpol.2020.116589
13. Roberfroid M. Dietary Fiber, Inulin, and Oligofructose: A Review Comparing their Physiological Effects. Crit Rev Food Sci Nutr. 1993;33(2):103–48.
14. Devine DA, Marsh PD. Prospects for the development of probiotics and prebiotics for oral applications. J Oral Microbiol. 2009;1(2009):1–12.
15. Gupta N, Jangid AK, Pooja D, Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int J Biol Macromol [Internet]. 2019;132:852–63. Available from: https://doi.org/10.1016/j.ijbiomac.2019.03.188
16. Kim Y, Faqih MN, Wang SS. Factors affecting gel formation of inulin. Carbohydr Polym. 2001;46(2):135–45.
17. Imran S, Gillis RB, Kok MS, Harding SE, Adams GG. Application and use of inulin as a tool for therapeutic drug delivery. Biotechnol Genet Eng Rev. 2012;28:33–46.
18. Slavin J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients. 2013;5(4):1417–35.
19. Carabin IG, Gary Flamm W. Evaluation of safety of inulin and oligofructose as dietary fiber. Regul Toxicol Pharmacol. 1999;30(3):268–82.
20. Gibson GR. Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr. 1999;129(7 SUPPL.):1438–41.
21. Kolida S, Tuohy K, Gibson GR. Prebiotic effects of inulin and oligofructose. Br J Nutr. 2002;87(S2):S193–7.
22. Karimi R, Azizi MH, Ghasemlou M, Vaziri M. Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydr Polym [Internet]. 2015;119:85–100. Available from: http://dx.doi.org/10.1016/j.carbpol.2014.11.029
23. Liu J, Lu J feng, Wen X yuan, Kan J, Jin C hai. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury. Int J Biol Macromol [Internet]. 2015;72:1479–84. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2014.09.066
24. Xiong X, Huang G, Huang H. The antioxidant activities of phosphorylated polysaccharide from native ginseng. Int J Biol Macromol [Internet]. 2019;126:842–5. Available from: https://doi.org/10.1016/j.ijbiomac.2018.12.266
25. Pasqualetti V, Altomare A, Guarino MPL, Locato V, Cocca S, Cimini S, et al. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLoS One. 2014;9(5).
26. Ingredients F, Roberfroid MB. Inulin-Type Fructans?: Functional. 2018;(February):2493–502.
27. Pool-Zobel BL. Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br J Nutr. 2005;93(S1):S73–90.
28. Man S, Liu T, Yao Y, Lu Y, Ma L, Lu F. Friend or foe? The roles of inulin-type fructans. Carbohydr Polym [Internet]. 2021;252(September 2020):117155. Available from: https://doi.org/10.1016/j.carbpol.2020.117155
29. Yang HY, Yang SC, Chao JCJ, Chen JR. Beneficial effects of catechin-rich green tea and inulin on the body composition of overweight adults. Br J Nutr. 2012;107(5):749–54.
30. Kaur N, Gupta AK. Applications of inulin and oligofructose in health and nutrition. J Biosci. 2002;27(7):703–14.
31. Liu J, Lu J feng, Kan J, Wen X yuan, Jin C hai. Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. Int J Biol Macromol [Internet]. 2014;64:76–83. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2013.11.028
32. Gibson GR, Beatty ER, Wang XIN, Cummings JH. Oligofructose and Inulin. Gastroenterology. 1995;975–82.
33. Fernández-Bañares F. Nutritional care of the patient with constipation. Best Pract Res Clin Gastroenterol. 2006;20(3):575–87.
34. Alles MS, De Roos NM, Bakx JC, Van De Lisdonk E, Zock PL, Hautvast JGAJ. Consumption of fructooligosaccharides does not favorably affect blood glucose and serum lipid concentrations in patients with type 2 diabetes. Am J Clin Nutr. 1999;69(1):64–9.
35. Roberfroid MB. Nutritional and Health Benefits of Inulin and Oligofructose Caloric Value of Inulin and Oligofructose 1. J Nutr. 1999;129(March):1436–7.
36. Al-taani B, Khanfar MAI, Alsuod OABU. ENHANCEMENT OF THE RELEASE OF CURCUMIN BY THE FREEZE DRYING TECHNIQUE USING INULIN AND NEUSILIN AS CARRIERS. 2018;10(3):3–9.
37. Banerjee D, Chowdhury R, Bhattacharya P. THE PREBIOTIC INFLUENCE OF INULIN ON GROWTH RATE AND ANTIBIOTIC SENSITIVITY. 2016;8(4).
38. Bunout D, Barrera G, Hirsch S, Gattas V, De La Maza MP, Haschke F, et al. Effects of a nutritional supplement on the immune response and cytokine production in free-living Chilean elderly. J Parenter Enter Nutr. 2004;28(5):348–54.
39. Kelly-Quagliana KA, Nelson PD, Buddington RK. Dietary oligofructose and inulin modulate immune functions in mice. Nutr Res. 2003;23(2):257–67.
40. Scholz-Ahrens KE, Schrezenmeir J. Inulin, oligofructose and mineral metabolism — experimental data and mechanism. Br J Nutr. 2002;87(S2):S179–86.
41. Coudray C, Bellanger J, Castiglia-Delavaud C, Rémésy C, Vermorel M, Rayssignuier Y. Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur J Clin Nutr. 1997;51(6):375–80.
42. Coussement PAA. Nutritional and health benefits of inulin and oligofructose inulin and oligofructose: safe intakes and legal status 1. J Nutr. 1999;129(March):1412–7.
43. Ripoll C, Flourié B, Megnien S, Hermand O, Janssens M. Gastrointestinal tolerance to an inulin-rich soluble roasted chicory extract after consumption in healthy subjects. Nutrition. 2010;26(7–8):799–803.
44. López-Molina D, Chazarra S, How CW, Pruidze N, Navarro-Perán E, García-Cánovas F, et al. Cinnamate of inulin as a vehicle for delivery of colonic drugs. Int J Pharm [Internet]. 2015;479(1):96–102. Available from: http://dx.doi.org/10.1016/j.ijpharm.2014.12.064
45. Koruri SS, Banerjee D, Chowdhury R. Innovare Academic Sciences STUDIES ON PREBIOTIC FOOD ADDITIVE ( INULIN ) IN INDIAN DIETARY FIBRE SOURCES - GARLIC ( ALLIUM SATIVUM ), WHEAT ( TRITICUM SPP .), OAT ( AVENA SATIVA ) AND DALIA ( BULGUR ). 2014;6(9).
46. Varan G, Varan C, Bilensoy E. Plant-Based Natural Polymeric Nanoparticles as Promising Carriers for Anticancer Therapeutics [Internet]. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics. Elsevier Inc.; 2019. 293–318 p. Available from: http://dx.doi.org/10.1016/B978-0-12-816963-6.00014-5
47. Maurer JM, Hofman S, Schellekens RCA, Tonnis WF, Dubois AOT, Woerdenbag HJ, et al. Development and potential application of an oral ColoPulse infliximab tablet with colon specific release: A feasibility study. Int J Pharm [Internet]. 2016;505(1–2):175–86. Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.03.027
48. Shivhare K, Garg C, Priyam A, Gupta A, Sharma AK, Kumar P. Enzyme sensitive smart inulin-dehydropeptide conjugate self-assembles into nanostructures useful for targeted delivery of ornidazole. Int J Biol Macromol [Internet]. 2018;106:775–83. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.08.071
49. Maris B, Verheyden L, Van Reeth K, Samyn C, Augustijns P, Kinget R, et al. Synthesis and characterisation of inulin-azo hydrogels designed for colon targeting. Int J Pharm. 2001;213(1–2):143–52.
50. Van Den Mooter G, Vervoort L, Kinget R. Characterization of methacrylated inulin hydrogels designed for colon targeting: In Vitro release of BSA. Pharm Res. 2003;20(2):303–7.
51. Wang D, Sun F, Lu C, Chen P, Wang Z, Qiu Y, et al. Inulin based glutathione-responsive delivery system for colon cancer treatment. Int J Biol Macromol [Internet]. 2018;111:1264–72. Available from: https://doi.org/10.1016/j.ijbiomac.2018.01.071
52. Maksimenko A, Dosio F, Mougin J, Ferrero A, Wack S, Reddy LH, et al. A unique squalenoylated and nonpegylateddoxorubicin nanomedicine with systemiclong-circulating properties and anticancer activity. Proc Natl Acad Sci U S A. 2014;111(2):217–26.
53. Mandracchia D, Rosato A, Trapani A, Chlapanidas T, Montagner IM, Perteghella S, et al. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. Nanomedicine Nanotechnology, Biol Med [Internet]. 2017;13(3):1245–54. Available from: http://dx.doi.org/10.1016/j.nano.2017.01.001
54. Mauro N, Campora S, Scialabba C, Adamo G, Licciardi M, Ghersi G, et al. Self-organized environment-sensitive inulin-doxorubicin conjugate with a selective cytotoxic effect towards cancer cells. RSC Adv [Internet]. 2015;5(41):32421–30. Available from: http://dx.doi.org/10.1039/C5RA00287G
55. Nigam Joshi P, Agawane S, Athalye MC, Jadhav V, Sarkar D, Prakash R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater Sci Eng C [Internet]. 2017;78:1203–11. Available from: http://dx.doi.org/10.1016/j.msec.2017.03.176
56. Muley P, Kumar S, El Kourati F, Kesharwani SS, Tummala H. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Int J Pharm [Internet]. 2016;500(1–2):32–41. Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.01.005
57. Kesharwani SS, Dachineni R, Bhat GJ, Tummala H. Hydrophobically modified inulin-based micelles: Transport mechanisms and drug delivery applications for breast cancer. J Drug Deliv Sci Technol [Internet]. 2019;54(September):101254. Available from: https://doi.org/10.1016/j.jddst.2019.101254
58. Sardo C, Craparo EF, Porsio B, Giammona G, Cavallaro G. Improvements in Rational Design Strategies of Inulin Derivative Polycation for siRNA Delivery. Biomacromolecules. 2016;17(7):2352–66.
59. Mensink MA, Frijlink HW, Van Der Voort Maarschalk K, Hinrichs WLJ. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr Polym [Internet]. 2015;134:418–28. Available from: http://dx.doi.org/10.1016/j.carbpol.2015.08.022
60. © 199 2 Nature Publishing Group http://www.nature.com/naturebiotechnology.
61. Tonnis WF, Mensink MA, De Jager A, Van Der Voort Maarschalk K, Frijlink HW, Hinrichs WLJ. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Mol Pharm. 2015;12(3):684–94.
62. Leyva-porras C, López-pablos AL, Alvarez-salas C, Pérez-urizar J. Polysaccharides. Polysaccharides. 2021;1–22.
63. Charoenwongpaiboon T, Wangpaiboon K, Panpetch P, Field RA, Barclay JE, Pichyangkura R, et al. Temperature-dependent inulin nanoparticles synthesized by Lactobacillus reuteri 121 inulosucrase and complex formation with flavonoids. Carbohydr Polym [Internet]. 2019;223(June):115044. Available from: https://doi.org/10.1016/j.carbpol.2019.115044
64. Tripodo G, Pasut G, Trapani A, Mero A, Lasorsa FM, Chlapanidas T, et al. Inulin- d -?-tocopherol succinate (INVITE) nanomicelles as a platform for effective intravenous administration of curcumin. Biomacromolecules. 2015;16(2):550–7.
65. Hester SN, Mastaloudis A, Gray R, Antony JM, Evans M, Wood SM. Efficacy of an anthocyanin and prebiotic blend on intestinal environment in obese male and female subjects. J Nutr Metab. 2018;2018.
66. Cui H, Liu S, Lv Y, Wu S, Wang L, Hao F, et al. Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core–shell MOFs nanoreactor: Identification of the formed metal–N as the structure of an active site. J Catal [Internet]. 2020;381:468–81. Available from: https://doi.org/10.1016/j.jcat.2019.11.024
67. Epstein JH. A PHOTOMETRIC METHOD FOR THE DETERMINATION IN PLASMA AND URINE * OF It is generally accepted that , of the substances used to test glomerular filtration , inulin is the most satisfactory . For the determination of inulin clearance , inulin is injected int. :839–46.
68. Hauser-Kawaguchi A, Milne M, Li F, Lee TY, Luyt LG. The development of a near infrared inulin optical probe for measuring glomerular filtration rate. Int J Biol Macromol. 2019;123:255–60.
69. Skwarczynski M. Inulin: A New Adjuvant With Unknown Mode of Action. EBioMedicine [Internet]. 2017;15:8–9. Available from: http://dx.doi.org/10.1016/j.ebiom.2016.11.019
70. Cooper PD, Steele EJ. Algammulin, a new vaccine adjuvant comprising gamma inulin particles containing alum: preparation and in vitro properties. Vaccine. 1991;9(5):351–7.
Statistics
5 Views | Downloads
Citations
How to Cite
Kulkarni, P. K., & Kishan, C. S. (2021). A Comprehensive review on Role of Inulin. International Journal of Applied Pharmaceutics, 13(3). https://doi.org/10.22159/ijap.2021v13i3.40863
Section
Review Article(s)