IN VITRO DRUG RELEASE STUDY OF CHLORAMPHENICOL IN SITU GEL WITH BASES MIXTURE OF POLOXAMER 407 AND HPMC BY OPTIMIZATION WITH FACTORIAL DESIGN

Authors

  • INSAN SUNAN KURNIAWANSYAH Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
  • TAOFIK RUSDIANA Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
  • HURIYATUS TSANIYAH Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
  • HANDRIAN RAMOKO Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
  • HABIBAH A. WAHAB School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
  • ANAS SUBARNAS Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia

DOI:

https://doi.org/10.22159/ijap.2021.v13s4.43829

Keywords:

Chloramphenicol, In situ gel, In vitro diffusion, Poloxamer 407, HPMC, Franz diffusion, Factorial design, Critical process parameters

Abstract

Objective: The objective of this study was to find the best base mixture composition (poloxamer 407 and HPMC) of chloramphenicol in situ gel formula based on in vitro property (Cumulative amount of drug release).

Methods: The in vitro diffusion of chloramphenicol in situ gel study was carried out using franz diffusion cells to know the effect of the Critical Process Parameters (CPPs) as independent variables (poloxamer 407 and hydroxypropyl methylcellulose (HPMC)) on the Critical Quality Attribute (CQA) as dependent variable (cumulative amount of drug release) with 22 factorial design.

Results: 22 factorial design of chloramphenicol in situ gel yielded 4 variations of poloxamer 407 and HPMC bases component in %w/v as follows, F1 (5:0.45), F2 (10:0.45) F3 (5:1) and F4 (10:1). The amount of drug release results from in vitro dissolution assay were 30.60% (F1), 45.64% (F2), 58.30% (F3), and 22.50%) (F4).

Conclusion: Formula 3 (F3) was considered as the best formula component in terms of in vitro assay of chloramphenicol in situ gel with a desirability value of 0.58.

Downloads

Download data is not yet available.

References

Majeed A, Khan NA. Ocular in situ gel: an overview. J Drug Delivery Ther. 2019;9(1):337-47. doi: 10.22270/ jddt.v9i1.2231.

Anshul S, Renu S. A review on levofloxacin in situ-gel formulation. Asian J Pharm Clin Res. 2015;8(1):37-41.

Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, Lu J, Li J, Du S, Liu Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14(1):1-15. doi: 10.1016/j.ajps.2018.04.008, PMID 32104434.

Zhu L, Ao J, Li P. A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: in vitro and in vivo evaluation. Drug Des Dev Ther. 2015;9:3943-9. doi: 10.2147/DDDT.S87368, PMID 26251573.

Pijls RT, Sonderkamp T, Daube GW, Krebber R, Hanssen HHL, Nuijts RMMA, Koole LH. Studies on a new device for drug delivery to the eye. Eur J Pharm Biopharm. 2005;59(2):283-8. doi: 10.1016/j.ejpb.2004.08.011, PMID 15661500.

Almeida H, Amaral MH, Lobao P, Sousa Lobo JM. Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Deliv. 2013;10(9):1223-37. doi: 10.1517/17425247.2013.796360, PMID 23688342.

Almeida H, Amaral MH, Lobao P, Lobo JMS. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today. 2014;19(4):400-12. doi: 10.1016/j.drudis.2013.10.001, PMID 24120893.

Sasaki H, Yamamura K, Nishida K, Nakamura J, Ichikawa M. Delivery of drugs to the eye by topical application. Prog Retin Eye Res. 1996;15(2):583-620. doi: 10.1016/1350-9462(96)00014-6.

Kurniawansyah IS, Abdassah MJ. Formulation and evaluation of chloramphenicol ophthalmic hydrogel with carbomer and hidroxy propyl methylcellulose combination bases. Int J Drug Deliv Technol. 2019;9(2):145-50. doi: 10.25258/ijddt.9.2.6.

Liu Y, Liu J, Zhang X, Zhang R, Huang Y, Wu C. In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech. 2010;11(2):610-20. doi: 10.1208/s12249-010-9413-0, PMID 20354916.

Dasankoppa FS, Solankiy P, Sholapur HN, Jamakandi VG, Sajjanar VM, Walveka PM. Design, formulation, and evaluation of in situ gelling ophthalmic drug delivery system comprising anionic and nonionic polymers. Indian J Health Sci Biomed Res. 2017;10(3):323-30. doi: 10.4103/kleuhsj.kleuhsj_131_17.

Sun J, Zhou Z. A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation. Drug Des Dev Ther. 2018;12:383-9. doi: 10.2147/DDDT.S153405, PMID 29503531.

Kurniawansyah IS, Rusdiana T, Wahab HA, Subarnas A. Ophthalmic gel with ion activated system. Int J Appl Pharm. 2019;11(4):15-8.

Patil S, Kadam A, Bandgar S, Patil S. Formulation and evaluation of an in situ gel for ocular drug delivery of anticonjunctival drug. Cellul Chem Technol. 2015;49(1):35-4.

Soliman KA, Ullah K, Shah A, Jones DS, Singh TRR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today. 2019;24(8):1575-86. doi: 10.1016/j.drudis.2019.05.036, PMID 31175956.

Patel N, Thakkar V, Metalia V, Baldaniya L, Gandhi T, Gohel M. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using an application of quality by design concept. Drug Dev Ind Pharm. 2016;42(9):1406-23. doi: 10.3109/03639045.2015.1137306, PMID 26716613.

Kumar D, Nagaich U, Gulati N, Jain N. Controlled ocular drug delivery of ofloxacin using temperature modulated in situ gelling system. J Sci Soc. 2013;40(2):90. doi: 10.4103/0974-5009.115477.

Kurniawansyah IS, Gozali D, Sopyan I, Iqbal M, Subarnas A. Physical study of chloramphenicol in situ Gel with Base hydroxypropyl methylcellulose and poloxamer 188. J Pharm Bioallied Sci. 2019;11(Suppl 4):S547-50. doi: 10.4103/jpbs.JPBS_201_19, PMID 32148361.

Kurniawansyah IS, Rusdiana T, Sopyan I, Subarnas A. A review on poloxamer and hydroxypropyl methylcellulose combination as thermoresponsive polymers in novel ophthalmic in situ gel formulation and their characterization. Int J Appl Pharm. 2021;13(1).

Irshad Alam M, Alam I, Khanam N, Shaikh JK, Ganguly S. Quality by design-A recent trend in pharmaceutical industries. Alam World J Pharm Res. 2018;5.

Singh B, Pahuja S, Kapil R, Ahuja N. Formulation development of oral controlled-release tablets of hydralazine: optimization of drug release and bioadhesive characteristics. Acta Pharm. 2009;59(1):1-13. doi: 10.2478/v10007-009-0005-z, PMID 19304554.

Patel MM, Amin AF. Design and optimization of the colon-targeted system of theophylline for chronotherapy of nocturnal asthma. J Pharm Sci. 2011;100(5):1760-72. doi: 10.1002/jps.22406, PMID 21154966.

Solanki AB, Parikh JR, Parikh RH, Patel MR. Evaluation of different compositions of niosomes to optimize aceclofenac transdermal delivery. Asian J Pharm Sci. 2010;5(3).

Jaynes J, Ding X, Xu H, Wong WK, Ho CM. Application of fractional factorial designs to study drug combinations. Stat Med. 2013;32(2):307-18. doi: 10.1002/sim.5526, PMID 22859316.

Montgomery DC Rosatone L, editor. Design and analysis of experiments. 9th ed. Ninth. John Wiley and Sons; 2017.

Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A. In situ ophthalmic gel-forming systems of poloxamer 407 and hydroxypropyl methylcellulose mixtures for sustained ocular delivery of chloramphenicol: optimization study by factorial design. Heliyon. 2020;6(11):e05365. doi: 10.1016/j.heliyon.2020.e05365, PMID 33251348.

Bachhav HD, Savkare A, Karmarkar R, Derle D. Development of poloxamer based thermosensitive in situ ocular gel of betaxolol hydrochloride. Int J Pharm Pharm Sci. 2015;7(6):287-91.

Reddy MC, Kumar AC. Design and evaluation of chloramphenicol thermoreversible in situ gels for ocular drug delivery. Int J Innov Pharm Res. 2011;2(2):131-8.

Al-bazzaz FY, Al-Kotaji M. Ophthalmic in-situ sustained gel of ciprofloxacin, preparation and evaluation study. Int J App Pharm. 2018;10(4):153. doi: 10.22159/ijap.2018v10i4.26885.

Darwhekar G, Jain P, Jain DK, Agrawal G. Development and optimization of dorzolamide hydrochloride and timolol maleate in situ gel for glaucoma treatment. Asian J Pharm Ana. 2011;1(4):93-7.

Kurniawansyah IS, Sopyan I, Wathoni N, Fillah DL, Praditya RU. Application and characterization of in situ gel. Int J App Pharm. 2018;10(6):34-7. doi: 10.22159/ijap.2018v10i6.28767.

Shashank Nayak N, Sogali BS, Thakur RS. Formulation and evaluation of pH triggered in situ ophthalmic gel of moxifloxacin hydrochloride. Int J Pharm Pharm Sci. 2012;4(2):452-9.

Mouzam MI, Dehghan MHG, Asif S, Sahuji T, Chudiwal P. Preparation of a novel floating ring capsule-type dosage form for stomach specific delivery. Saudi Pharm J. 2011;19(2):85-93. doi: 10.1016/j.jsps.2011.01.004, PMID 23960746.

Baishya H. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J Dev Drugs. 2017;06(2). doi: 10.4172/2329-6631.1000171.

Shaw MC. Engineering statistics. Eng Probl Solving Publ Online. 2001:375-407.

Published

11-12-2021

How to Cite

KURNIAWANSYAH, I. S., RUSDIANA, T., TSANIYAH, H., RAMOKO, H., WAHAB, H. A., & SUBARNAS, A. (2021). IN VITRO DRUG RELEASE STUDY OF CHLORAMPHENICOL IN SITU GEL WITH BASES MIXTURE OF POLOXAMER 407 AND HPMC BY OPTIMIZATION WITH FACTORIAL DESIGN. International Journal of Applied Pharmaceutics, 13(4), 116–123. https://doi.org/10.22159/ijap.2021.v13s4.43829

Issue

Section

Original Article(s)

Most read articles by the same author(s)