MOLECULAR DOCKING AND ADMET PREDICTION OF 5-BENZYLOXYTRYPTOPHAN AS A POTENTIAL RADIOPHARMACEUTICAL KIT FOR MOLECULAR IMAGING OF CANCER

Authors

  • FAISAL MAULANA IBRAHIM Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia
  • HOLIS ABDUL HOLIK Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia
  • GHIFARI FARHAN HASIBUAN Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia
  • ARIFUDIN ACHMAD Department of Nuclear Medicine, Faculty of Medicine/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia
  • ACHMAD HUSSEIN SUNDAWA KARTAMIHARDJA Department of Nuclear Medicine, Faculty of Medicine/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia

DOI:

https://doi.org/10.22159/ijap.2021.v13s4.43853

Keywords:

5-Benzyloxytryptophan, ADMET, Bifunctional chelating agents, LAT1, Molecular docking

Abstract

Objective: This in silico study aims to determine the inhibition effect of 5-BOTP with various bifunctional chelating agents (BFCA); NOTA, DOTA, TETA, CTPA, H2CB-DO2A, H2CBTE2A against the antiporter site of the LAT1.

Methods: The research method consisted of the binding mode of 5-BOTP and its derivatives with LAT1, the docking score, the analysis of preADMET, and the overview of Ro5 compatibility.

Results: The results showed that 5-BOTP-NOTA and 5-BOTP-DOTA had interactions with the gating residue (Phe252, Trp257, Asn258, and Tyr259) on the antiporter site of LAT1. 5-BOTP-NOTA and 5-BOTP-DOTA affinity are around-11.50 and-9.14 kcal/mol, respectively.

Conclusion: Based on this study, 5-BOTP-NOTA and 5-BOTP-DOTA are the new compounds that have the potential as a theranostic agent of cancer by inhibiting LAT1.

Downloads

Download data is not yet available.

References

Haase C, Bergmann R, Fuechtner F, Hoepping A, Pietzsch J. L-type amino acid transporters LAT1 and LAT4 in cancer: uptake of 3-O-methyl-6-18F-fluoro-L-dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo. J Nucl Med. 2007;48(12):2063-71. doi: 10.2967/jnumed.107.043620, PMID 18056335.

Napolitano L, Galluccio M, Scalise M, Parravicini C, Palazzolo L, Eberini I, Indiveri C. Novel insights into the transport mechanism of the human amino acid transporter LAT1 (SLC7A5). Probing critical residues for substrate translocation. Biochim Biophys Acta Gen Subj. 2017;1861(4):727-36. doi: 10.1016/j.bbagen.2017.01.013, PMID 28088504.

Jin SE, Jin HE, Hong SS. Targeting L-type amino acid transporter 1 for anticancer therapy: clinical impact from diagnostics to therapeutics. Expert Opin Ther Targets. 2015;19(10):1319-37. doi: 10.1517/14728222.2015.1044975, PMID 25968633.

Achmad A, Lestari S, Holik HA, Rahayu D, Bashari MH, Faried A, Kartamihardja AHS. Highly specific l-type amino acid transporter 1 inhibition by JPH203 as a potential pan-cancer treatment. Processes. 2021;9(7):1170. doi: 10.3390/pr9071170.

Scalise M, Galluccio M, Console L, Pochini L, Indiveri C. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem. 2018;6:243. doi: 10.3389/fchem.2018.00243, PMID 29988369.

Hayashi K, Jutabha P, Maeda S, Supak Y, Ouchi M, Endou H, Fujita T, Chida M, Anzai N. Anzai N. LAT1 acts as a crucial transporter of amino acids in human thymic carcinoma cells. J Pharmacol Sci. 2016;132(3):201-4. doi: 10.1016/j.jphs.2016.07.006, PMID 27567475.

Oda K, Hosoda N, Endo H, Saito K, Tsujihara K, Yamamura M, Sakata T, Anzai N, Wempe MF, Kanai Y, Endou H. L-type amino acid transporter 1 inhibitors inhibit tumor cell growth. Cancer Sci. 2010;101(1):173-9. doi: 10.1111/j.1349-7006.2009.01386.x, PMID 19900191.

Owunmane P, Sadek M. The handbook of radiopharmaceuticals. 1st ed. London: Chapman & Hall Medical; 1995. p. 59.

Singh N, Scalise M, Galluccio M, Wieder M, Seidel T, Langer T, Indiveri C, Ecker GF. Discovery of potent inhibitors for the large neutral amino acid Transporter 1 (LAT1) by structure-based methods. Int J Mol Sci. 2018;20(1):27. doi: 10.3390/ijms20010027, PMID 30577601.

Ibrahim FM, Holik HA, Achmad A. In silico studies of amentoflavone and its derivatives against sars-cov-2. Rasayan J Chem. 2021;14(3):1469-81. doi: 10.31788/RJC.2021.1436172.

Hidayat S, Ibrahim FM, Pratama KF, Muchtaridi M. The interaction of alpha mangostin and its derivatives against main protease enzyme in covid 19 using in silico methods. J Adv Pharm Technol Res. 2021;12(3):285-90. doi: 10.4103/japtr.JAPTR_299_20, PMID: 34345609

Muchtaridi M, Syahidah HN, Subarnas A, Yusuf M, Bryant SD, Langer T. Molecular docking and 3D-pharmacophore modeling to study the interactions of chalcone derivatives with estrogen receptor alpha. Pharmaceuticals. 2017;10(4):81. doi: 10.3390/ph10040081.

Jeffrey GA. An introduction to hydrogen bonding. Oxford, England: Oxford University Press; 1997.

Yee S. In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man- fact or myth. Pharm Res. 1997;14(6):763-6. doi: 10.1023/a:1012102522787, PMID 9210194.

Published

11-12-2021

How to Cite

IBRAHIM, F. M., HOLIK, H. A., HASIBUAN, G. F., ACHMAD, A., & KARTAMIHARDJA, A. H. S. (2021). MOLECULAR DOCKING AND ADMET PREDICTION OF 5-BENZYLOXYTRYPTOPHAN AS A POTENTIAL RADIOPHARMACEUTICAL KIT FOR MOLECULAR IMAGING OF CANCER. International Journal of Applied Pharmaceutics, 13(4), 171–175. https://doi.org/10.22159/ijap.2021.v13s4.43853

Issue

Section

Original Article(s)