IN SILICO STUDIES OF (S)-2-AMINO-4-(3,5-DICHLOROPHENYL) BUTANOIC ACID AGAINST LAT1 AS A RADIOTHERANOSTIC AGENT OF CANCER

Authors

  • HOLIS ABDUL HOLIK Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia
  • FAISAL MAULANA IBRAHIM Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia
  • ABIB LATIFU FATAH Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia
  • ARIFUDIN ACHMAD Department of Nuclear Medicine, Faculty of Medicine/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia
  • ACHMAD HUSSEIN SUNDAWA KARTAMIHARDJA Department of Nuclear Medicine, Faculty of Medicine/Universitas Padjadjaran, Sumedang 45363, (West Java) Indonesia

DOI:

https://doi.org/10.22159/ijap.2021.v13s4.43868

Keywords:

Bifunctional chelators, Cancer, LAT1, In silico, Radiotheranostic

Abstract

Objective: This study aims to obtain a good activity of radiotheranostic kit for cancer which is built by combining (S)-2-amino-4-(3,5-dichlorophenyl) butanoic acid (ADPB) with various bifunctional chelators.

Methods: This study was conducted through in silico method that consists of molecular docking simulation using AutoDock 4 as well as ADMET prediction using vNN-ADMET and Pre-ADMET. Six bifunctional chelators (i.e. CTPA, DOTA, H2CB-TE2A, H2CB-DO2A, NOTA, and TETA) were conjugated with ADPB as a carrier molecule and further analyzed through molecular docking and ADMET prediction.

Results: The results showed that the ADPB-NOTA has the best affinity with the Gibbs free energy (ΔG) of-7.68 kcal/mol with an inhibition constant of 2.36 µM and its ability to bind with the gating residue of LAT1 (ASN258) through hydrogen interactions. Besides that, the ADPB-NOTA compound has a good ADME profile and is predicted to be safe for human use.

Conclusion: This study showed that ADPB-NOTA is the most prospective candidate to be used as a radiotheranostic agent.

Downloads

Download data is not yet available.

References

WHO [internet]. Available from: https://gco/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf. [Last accessed on 10 Jan 2021]

Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019 Apr 1;20(2):273-86.

Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med. 2019;11(509):eaaw8412. doi: 10.1126/scitranslmed.aaw8412, PMID 31511426.

Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. doi: 10.1038/s41573-020-0073-9 [published correction appears in Nat Rev Drug Discov. 2020 Sep 7;19(9):589-608. doi: 10.1038/s41573-020-0073-9.

Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, Gambhir SS, Hricak H, Weissleder R. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2020;21(3):e146-56. doi: 10.1016/S1470-2045(19)30821-6, PMID 32135118.

Achmad A, Lestari S, Holik HA, Rahayu D, Bashari MH, Faried A, Kartamihardja AHS. Highly Specific L-Type Amino Acid Transporter 1 Inhibition by JPH203 as a Potential Pan-Cancer Treatment. Processes. 2021;9(7):1170. doi: 10.3390/pr9071170.

Kanai Y, Segawa H, Miyamoto Ki, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998;273(37):23629-32. doi: 10.1074/jbc.273.37.23629, PMID 9726963.

Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514(2):291-302. doi: 10.1016/s0005-2736(01)00384-4, PMID 11557028.

Kim DK, Ahn SG, Park JC, Kanai Y, Endou H, Yoon JH. Expression of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in oral squamous cell carcinoma and its precursor lesions. Anticancer Res. 2004;24(3a):1671-5.

Honjo H, Kaira K, Miyazaki T, Yokobori T, Kanai Y, Nagamori S, Oyama T, Asao T, Kuwano H. Clinicopathological significance of LAT1 and ASCT2 in patients with surgically resected esophageal squamous cell carcinoma. J Surg Oncol. 2016;113(4):381-9. doi: 10.1002/jso.24160, PMID 26936531.

Ichinoe M, Mikami T, Yoshida T, Igawa I, Tsuruta T, Nakada N, Anzai N, Suzuki Y, Endou H, Okayasu I. High expression of L-type amino-acid transporter 1 (LAT1) in gastric carcinomas: comparison with non-cancerous lesions. Pathol Int. 2011;61(5):281-9. doi: 10.1111/j.1440-1827.2011.02650.x, PMID 21501294.

Segawa A, Nagamori S, Kanai Y, Masawa N, Oyama T. L-type amino acid transporter 1 expression is highly correlated with Gleason score in prostate cancer. Mol Clin Oncol. 2013;1(2):274-80. doi: 10.3892/mco.2012.54, PMID 24649160.

Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, Hisada T, Tanaka S, Ishizuka T, Kanai Y, Endou H, Nakajima T, Mori M. Prognostic significance of L-type amino acid transporter 1 expression in resectable stage I-III nonsmall cell lung cancer. Br J Cancer. 2008;98(4):742-8. doi: 10.1038/sj.bjc.6604235, PMID 18253116.

Kaira K, Sunose Y, Ohshima Y, Ishioka NS, Arakawa K, Ogawa T, Sunaga N, Shimizu K, Tominaga H, Oriuchi N, Itoh H, Nagamori S, Kanai Y, Yamaguchi A, Segawa A, Ide M, Mori M, Oyama T, Takeyoshi I. Clinical significance of L-type amino acid transporter 1 expression as a prognostic marker and potential of new targeting therapy in biliary tract cancer. BMC Cancer. 2013;13:482. doi: 10.1186/1471-2407-13-482, PMID 24131658.

Kaira K, Sunose Y, Arakawa K, Ogawa T, Sunaga N, Shimizu K, Tominaga H, Oriuchi N, Itoh H, Nagamori S, Kanai Y, Segawa A, Furuya M, Mori M, Oyama T, Takeyoshi I. Prognostic significance of L-type amino-acid transporter 1 expression in surgically resected pancreatic cancer. Br J Cancer. 2012;107(4):632-8. doi: 10.1038/bjc.2012.310, PMID 22805328.

Furuya M, Horiguchi J, Nakajima H, Kanai Y, Oyama T. Correlation of L-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis. Cancer Sci. 2012;103(2):382-9. doi: 10.1111/j.1349-7006.2011.02151.x, PMID 22077314.

Hayase S, Kumamoto K, Saito K, Kofunato Y, Sato Y, Okayama H, Miyamoto K, Ohki S, Takenoshita S. L-type amino acid transporter 1 expression is upregulated and associated with cellular proliferation in colorectal cancer. Oncol Lett. 2017;14(6):7410-6. doi: 10.3892/ol.2017.7148, PMID 29344181.

Singh N, Scalise M, Galluccio M, Wieder M, Seidel T, Langer T, Indiveri C, Ecker GF. Discovery of potent inhibitors for the large neutral amino acid Transporter 1 (LAT1) by structure-based methods. Int J Mol Sci. 2018;20(1):27. doi: 10.3390/ijms20010027, PMID 30577601.

Yan R, Zhao X, Lei J, Zhou Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature. 2019;568(7750):127-30. doi: 10.1038/s41586-019-1011-z, PMID 30867591.

Sherman W, Beard HS, Farid R. Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des. 2006;67(1):83-4. doi: 10.1111/j.1747-0285.2005.00327.x, PMID 16492153.

Ibrahim FM, Holik HA, Achmad A. In-silico studies of amentoflavone and its derivatives against sars-cov-2. Rasayan J Chem. 2021;14(3). doi: 10.31788/RJC.2021.1436172.

Hidayat S, Ibrahim FM, Pratama KF, Muchtaridi M. The interaction of alpha-mangostin and its derivatives against main protease enzyme in covid-19 using in silico methods. J Adv Pharm Technol Res. 2021;12(3):285-90. doi: 10.4103/japtr.JAPTR_299_20, PMID 34345609.

Yonsei engineering research complex. Descript Pre-ADMET. 2017.

Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016;17(2):144. doi: 10.3390/ijms17020144, PMID 26821017.

Garg P, Verma J. In silico prediction of blood brain barrier permeability: an Artificial Neural Network model. J Chem Inf Model. 2006;46(1):289-97. doi: 10.1021/ci050303i, PMID 16426064.

Liu R, Schyman P, Wallqvist A. Critically assessing the predictive power of QSAR models for human liver microsomal stability. J Chem Inf Model. 2015;55(8):1566-75. doi: 10.1021/acs.jcim.5b00255, PMID 26170251.

Guengerich FP. Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J. 2006;8(1):E101-11. doi: 10.1208/aapsj080112, PMID 16584116.

Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201-8. doi: 10.1124/dmd.104.000794, PMID 15304429.

Andrade RJ, Chalasani N, Bjornsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, Devarbhavi H, Merz M, Lucena MI, Kaplowitz N, Aithal GP. Drug-induced liver injury. Nat Rev Dis Primers. 2019;5(1):58. doi: 10.1038/s41572-019-0105-0, PMID 31439850.

Schyman P, Liu R, Wallqvist A. General purpose 2D and 3-D similarity approach to identify hERG blockers. J Chem Inf Model. 2016;56(1):213-22. doi: 10.1021/acs.jcim.5b00616, PMID 26718126.

Published

11-12-2021

How to Cite

HOLIK, H. A., IBRAHIM, F. M., FATAH, A. L., ACHMAD, A., & KARTAMIHARDJA, A. H. S. (2021). IN SILICO STUDIES OF (S)-2-AMINO-4-(3,5-DICHLOROPHENYL) BUTANOIC ACID AGAINST LAT1 AS A RADIOTHERANOSTIC AGENT OF CANCER. International Journal of Applied Pharmaceutics, 13(4), 239–243. https://doi.org/10.22159/ijap.2021.v13s4.43868

Issue

Section

Original Article(s)