• MENNA M. ABDELLATIF Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, (12566) Egypt
  • SARA MOHAMED AHMED Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, (12566) Egypt
  • MOHAMED A. EL-NABARAWI Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
  • MAHMOUD TEAIMA Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt



Intestinal permeability, Oral bioavailability, Nanocarriers


The two main issues impacting oral delivery are drug solubility and permeability. The FDA adopted the Biopharmaceutics Classification System (BCS) in 2000. The BCS categorizes drugs into four classes based on their solubility and permeability. For permeability improvement and bioavailability, many experimental systems are utilized. Numerous nanocarrier technologies have recently been utilized to increase drug permeability by employing nanocarrier systems such as lipid vesicles, polymeric and lipid nanoparticles, polymeric micelles, and submicron lipid emulsions. This review proposes innovative nano-delivery systems for permeability augmentation. It focuses on some illustrations of drugs with various nanosystems, how these systems were developed, and how they successfully boost intestinal drug permeability and bioavailability.


Download data is not yet available.


Preeti C, Agarwal V, Agarwal A. An overview on mouth dissolving tablet: from manufacturing and patented technique to quality control test. Asian J Pharm Clin Res. 2022;15(11):7-13. doi: 10.22159/ajpcr.2022.v15i11.46555.

Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: a review. Colloids Surf B Biointerfaces. 2020;196:111305. doi: 10.1016/j.colsurfb.2020.111305. PMID 32795844.

Devendra SL, Aakash SP, Nirmal D. Review study on analysis of the solubility of biopharmaceutical classification system class II drugs in a self-emulsifying drug delivery system. Asian J Pharm Clin Res. 2021;15(2):36-45. doi: 10.22159/ajpcr.2022.

Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The influence of nanoparticle properties on oral bioavailability of drugs. Int J Nanomedicine. 2020;15:6295-310. doi: 10.2147/IJN.S257269, PMID 32943863.

Wang Y, Cui Y, Zhao Y, Zhao Q, He B, Zhang Q. Effects of surface modification and size on oral drug delivery of mesoporous silica formulation. J Colloid Interface Sci. 2018;513:736-47. doi: 10.1016/j.jcis.2017.11.065, PMID 29220688.

Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: a more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release. 2020;321:669-709. doi: 10.1016/j.jconrel.2020.02.041, PMID 32112856.

Sun M, Hu H, Sun L, Fan Z. The application of biomacromolecules to improve oral absorption by enhanced intestinal permeability: a mini-review. Chin Chem Lett. 2020;31(7):1729-36. doi: 10.1016/j.cclet.2020.02.035.

Lang X, Wang T, Sun M, Chen X, Liu Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: a review. Int J Biol Macromol. 2020;154:433-45. doi: 10.1016/j.ijbiomac.2020.03.148, PMID 32194103.

Wang GN, Li YP, Yuan SK, Zhang H, Ren J, Ren X. The intestinal absorption mechanism of chicoric acid and its bioavailability improvement with chitosan. Heliyon. 2022;8(7):e09955. doi: 10.1016/j.heliyon.2022.e09955, PMID 35874082.

Du X, Yin S, Xu L, Ma J, Yu H, Wang G. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr Polym. 2020;229:115484. doi: 10.1016/j.carbpol.2019.115484. PMID 31826482.

Chen T, Tu L, Wang G, Qi N, Wu W, Zhang W. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int J Pharm. 2020;578:119105. doi: 10.1016/j.ijpharm.2020.119105. PMID 32018019.

Rahat I, Rizwanullah M, Gilani SJ, Bin-Jummah MN, Imam SS, Kala C. Thymoquinone loaded chitosan–solid lipid nanoparticles: formulation optimization to oral bioavailability study. J Drug Deliv Sci Technol. 2021;64:102565. doi: 10.1016/j.jddst.2021.102565.

Fayed ND, Goda AE, Essa EA, El Maghraby GM. Chitosan-encapsulated niosomes for enhanced oral delivery of atorvastatin. J Drug Deliv Sci Technol. 2021;66:102866. doi: 10.1016/j.jddst.2021.102866.

Karami Z, Saghatchi Zanjani MR, Nasihatsheno N, Hamidi M. Improved oral bioavailability of repaglinide, a typical BCS Class II drug, with a chitosan‐coated nanoemulsion. J Biomed Mater Res B Appl Biomater. 2020;108(3):717-28. doi: 10.1002/jbm.b.34426, PMID 31187938.

Anwer MK, Ali EA, Iqbal M, Ahmed MM, Aldawsari MF, Saqr AA. Development of chitosan-coated PLGA-based nanoparticles for improved oral olaparib delivery: in vitro characterization, and in vivo pharmacokinetic studies. Processes 2022;10(7):1329. doi: 10.3390/pr10071329.

M Kaoud RM, Heikal EJ, Gad S. Ezetimibe nanostructured lipid carriers (NLCS): a new technique to overcome the limitations of oral administration. Int J App Pharm. 2022;14(3):135-40. doi: 10.22159/ijap.2022v14i3.44072.

Hassan DH, Shohdy JN, El-Nabarawi MA, El-Setouhy DA, Abdellatif MM. Nanostructured lipid carriers for transdermal drug delivery. Int J App Pharm. 2022;14(4):88-93. doi: 10.22159/ijap.2022v14i4.44564.

Dudhipala N, Ay AA. Amelioration of ketoconazole in lipid nanoparticles for enhanced antifungal activity and bioavailability through oral administration for management of fungal infections. Chem Phys Lipids. 2020;232:104953. doi: 10.1016/j.chemphyslip.2020.104953. PMID 32814084.

Sun J, Liu J, Zhang J, Xia H. Meclizine-loaded nanostructured lipid carriers to manage nausea and vomiting: oral bioavailability improvement. J Drug Deliv Sci Technol. 2021;63:102432. doi: 10.1016/j.jddst.2021.102432.

Pyo YC, Tran P, Kim DH, Park JS. Chitosan-coated nanostructured lipid carriers of fenofibrate with enhanced oral bioavailability and efficacy. Colloids Surf B Biointerfaces. 2020;196:111331. doi: 10.1016/j.colsurfb.2020.111331. PMID 32906001.

Patel P, Patel M. Enhanced oral bioavailability of nintedanib esylate with nanostructured lipid carriers by lymphatic targeting: in vitro, cell line and in vivo evaluation. Eur J Pharm Sci. 2021;159:105715. doi: 10.1016/j.ejps.2021.105715. PMID 33453388.

Hu R, Liu S, Anwaier G, Wang Q, Shen W, Shen Q. Formulation and intestinal absorption of naringenin loaded nanostructured lipid carrier and its inhibitory effects on nonalcoholic fatty liver disease. Nanomedicine. 2021;32:102310. doi: 10.1016/j.nano.2020.102310. PMID 33184021.

Murthy A, Ravi PR, Kathuria H, Malekar S. Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers. Nanomaterials (Basel). 2020;10(6). doi: 10.3390/nano10061085, PMID 32486508.

Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R. Silica nanoparticles: a promising platform for enhanced oral delivery of macromolecules. J Control Release. 2020;326:544-55. doi: 10.1016/j.jconrel.2020.07.021, PMID 32687941.

Choi MJ, Kim JS, Yu H, Woo MR, Choi JE, Baek K. Comparison of the physicochemical properties, aqueous solubility, and oral bioavailability of Rivaroxaban-loaded high-pressure homogenised and shirasu porous glass membrane emulsified solid self-nanoemulsifying drug delivery systems. J Mol Liq. 2022;346:117057. doi: 10.1016/j.molliq.2021.117057.

Schultz HB, Wignall AD, Thomas N, Prestidge CA. Enhancement of abiraterone acetate oral bioavailability by supersaturated-silica lipid hybrids. Int J Pharm. 2020;582:119264. doi: 10.1016/j.ijpharm.2020.119264. PMID 32278053.

Meola TR, Schultz HB, Peressin KF, Prestidge CA. Enhancing the oral bioavailability of simvastatin with silica-lipid hybrid particles: the effect of supersaturation and silica geometry. Eur J Pharm Sci. 2020;150:105357. doi: 10.1016/j.ejps.2020.105357. PMID 32446169.

Zhang Y, Xiong M, Ni X, Wang J, Rong H, Su Y. Virus-mimicking mesoporous silica nanoparticles with an electrically neutral and hydrophilic surface to improve the oral absorption of insulin by breaking through dual barriers of the mucus layer and the intestinal epithelium. ACS Appl Mater Interfaces. 2021;13(15):18077-88. doi: 10.1021/acsami.1c00580, PMID 33830730.

Ndayishimiye J, Cao Y, Kumeria T, Blaskovich MAT, Falconer JR, Popat A. Engineering mesoporous silica nanoparticles towards oral delivery of vancomycin. J Mater Chem B. 2021;9(35):7145-66. doi: 10.1039/D1TB01430G, PMID 34525166.

Meola TR, Abuhelwa AY, Joyce P, Clifton P, Prestidge CA. A safety, tolerability, and pharmacokinetic study of a novel simvastatin silica-lipid hybrid formulation in healthy male participants. Drug Deliv Transl Res. 2021;11(3):1261-72. doi: 10.1007/s13346-020-00853-x, PMID 32918160.

Si S, Li H, Han X. Sustained release olmesartan medoxomil loaded PLGA nanoparticles with improved oral bioavailability to treat hypertension. J Drug Deliv Sci Technol. 2020;55:101422. doi: 10.1016/j.jddst.2019.101422.

Naserifar M, Hosseinzadeh H, Abnous K, Mohammadi M, Taghdisi SM, Ramezani M. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci. 2020;262:118555. doi: 10.1016/j.lfs.2020.118555. PMID 33035579.

Asal HA, Shoueir KR, El-Hagrasy MA, Toson EA. Controlled synthesis of in-situ gold nanoparticles onto chitosan functionalized PLGA nanoparticles for oral insulin delivery. Int J Biol Macromol. 2022;209(B):2188-96. doi: 10.1016/j.ijbiomac.2022.04.200, PMID 35504421.

Prabhuraj RS, Bomb K, Srivastava R, Bandyopadhyaya R. Selection of superior targeting ligands using pegylated PLGA nanoparticles for delivery of curcumin in the treatment of triple-negative breast cancer cells. J Drug Deliv Sci Technol. 2020;57:101722. doi: 10.1016/j.jddst.2020.101722.

Wu J, Chen L, Zhang X, Xu C, Liu J, Gu J. A core-shell insulin/CS-PLGA nanoparticle for enhancement of oral insulin bioavailability: in vitro and in vivo study. Int J Polym Mater Polym Biomater. 2022:1-9. doi: 10.1080/00914037.2022.2042290.

Haggag YA, Abosalha AK, Tambuwala MM, Osman EY, El‐Gizawy SA, Essa EA. Polymeric nanoencapsulation of zaleplon into PLGA nanoparticles for enhanced pharmacokinetics and pharmacological activity. Biopharm Drug Dispos. 2021;42(1):12-23. doi: 10.1002/bdd.2255, PMID 33320969.

Zhou JF, Zheng GD, Wang WJ, Yin ZP, Chen JG, Li JE. Physicochemical properties and bioavailability comparison of two quercetin loading zein nanoparticles with outer shell of caseinate and chitosan. Food Hydrocoll. 2021;120:106959. doi: 10.1016/j.foodhyd.2021.106959.

Sirvi A, Kuche K, Chaudhari D, Ghadi R, Date T, Katiyar SS. Supersaturable self-emulsifying drug delivery system: a strategy for improving the loading and oral bioavailability of quercetin. J Drug Deliv Sci Technol. 2022;71:103289. doi: 10.1016/j.jddst.2022.103289.

Sheth U, Nagane R, Bahadur P, Bahadur A. Salt effect on solubilization of hydrophobic drugs in block copolymeric micelles and investigation of their in vitro and in vivo oral efficiency. J Drug Deliv Sci Technol. 2017;39:531-41. doi: 10.1016/j.jddst.2017.05.007.

Giri BR, Yang HS, Song IS, Choi HG, Cho JH, Kim DW. Alternative methotrexate oral formulation: enhanced aqueous solubility, bioavailability, photostability, and permeability. Pharmaceutics. 2022;14(10). doi: 10.3390/pharmaceutics14102073, PMID 36297508.

Boni FI, Almeida A, Lechanteur A, Sarmento B, Cury BSF, Gremiao MPD. Mucoadhesive nanostructured polyelectrolyte complexes modulate the intestinal permeability of methotrexate. Eur J Pharm Sci. 2018;111:73-82. doi: 10.1016/j.ejps.2017.09.042, PMID 28962855.

Rahat I, Imam SS, Rizwanullah M, Alshehri S, Asif M, Kala C. Thymoquinone-entrapped chitosan-modified nanoparticles: formulation optimization to preclinical bioavailability assessments. Drug Deliv. 2021;28(1):973-84. doi: 10.1080/10717544.2021.1927245, PMID 34036860.

Fakhria A, Gilani SJ, Imam SS, Chandrakala. Formulation of thymoquinone loaded chitosan nano vesicles: in vitro evaluation and in vivo anti-hyperlipidemic assessment. J Drug Deliv Sci Technol. 2019;50:339-46. doi: 10.1016/j.jddst.2019.01.033.

Wu L, Zhao L, Su X, Zhang P, Ling G. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug Deliv. 2020;27(1):400-9. doi: 10.1080/10717544.2019.1689313, PMID 31729898.

Karavasili C, Andreadis II, Tsantarliotou MP, Taitzoglou IA, Chatzopoulou P, Katsantonis D. Self-nanoemulsifying drug delivery systems (SNEDDS) containing rice bran oil for enhanced fenofibrate oral delivery: in vitro digestion, ex vivo permeability, and in vivo bioavailability studies. AAPS PharmSciTech. 2020;21(6):208. doi: 10.1208/s12249-020-01765-2, PMID 32725343.

Saghafi Z, Mohammadi M, Mahboobian MM, Derakhshandeh K. Preparation, characterization, and in vivo evaluation of perphenazine-loaded nanostructured lipid carriers for oral bioavailability improvement. Drug Dev Ind Pharm. 2021;47(3):509-20. doi: 10.1080/03639045.2021.1892745, PMID 33650445.

Dong Z, Iqbal S, Zhao Z. Preparation of ergosterol-loaded nanostructured lipid carriers for enhancing oral bioavailability and antidiabetic nephropathy effects. AAPS PharmSciTech. 2020;21(2):64. doi: 10.1208/s12249-019-1597-3, PMID 31932990.

Wang Z, Li Y. Raloxifene/SBE-β-CD inclusion complexes formulated into nanoparticles with chitosan to overcome the absorption barrier for bioavailability enhancement. Pharmaceutics. 2018;10(3). doi: 10.3390/pharmaceutics10030076, PMID 29958389.

Dudhipala N, Gorre T. Neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for Parkinson’s disease: in vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics. 2020;12(5). doi: 10.3390/pharmaceutics12050448, PMID 32414195.

Anwar W, Dawaba HM, Afouna MI, Samy AM, Rashed MH, Abdelaziz AE. Enhancing the oral bioavailability of candesartan cilexetil loaded nanostructured lipid carriers: in vitro characterization and absorption in rats after oral administration. Pharmaceutics. 2020;12(11). doi: 10.3390/pharmaceutics12111047, PMID 33142816.

AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. A self-nanoemulsifying drug delivery system for enhancing the oral bioavailability of candesartan cilexetil: ex vivo and in vivo evaluation. J Pharm Sci. 2019;108(11):3599-608. doi: 10.1016/j.xphs.2019.07.004, PMID 31348934.

Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J Control Release. 2019;313:1-13. doi: 10.1016/j.jconrel.2019.10.006. PMID 31622690.

Tsai LC, Chen CH, Lin CW, Ho YC, Mi FL. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int J Biol Macromol. 2019;126:141-50. doi: 10.1016/j.ijbiomac.2018.12.182, PMID 30586591.

El Leithy ES, Abdel-Bar HM, Ali RAM. Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. Int J Pharm. 2019;571:118708. doi: 10.1016/j.ijpharm.2019.118708. PMID 31593805.



How to Cite

ABDELLATIF, M. M., AHMED, S. M., EL-NABARAWI, M. A., & TEAIMA, M. (2023). NANO-DELIVERY SYSTEMS FOR ENHANCING ORAL BIOAVAILABILITY OF DRUGS. International Journal of Applied Pharmaceutics, 15(1), 13–19.



Review Article(s)

Most read articles by the same author(s)

1 2 > >>