• HANAFI TIRAN Department of Pharmaceutics and Pharmaceutical Technology
  • INSAN SUNAN KURNIAWANSYAH Department of Pharmaceutics and Pharmaceutical Technology
  • NYI MEKAR SAPTARIN Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia, 45363



In situ gel, Ophthalmic, Fluoroquinolones, Macrolides, Aminoglycosides, Bioavailability, Pharmacokinetic


This article review was aimed to see a significant comparison of the bioavailability of in situ gel preparations compared to conventional preparations in terms of pharmacokinetic profile parameters such as AUC (Area Under Curve), Cmax, Tmax, t½, k (elimination rate constant) and MRT (Mean Residence Time). This article review was conducted by looking for available articles with a different assessment based on original research articles published during 2002–2022. An electronic search was conducted from Pubmed and Google Scholar. A significant increase in bioavailability was produced by in situ gel preparations compared to conventional preparations; this happened because the polymer that used improved the drug delivery system to the targets of previous conventional preparations. The in situ ophthalmic gel preparations have better bioavailability based on pharmacokinetic profiles compared to conventional preparations.


Download data is not yet available.


Downie LE, Bandlitz S, Bergmanson JPG, Craig JP, Dutta D, Maldonado Codina C. CLEAR–anatomy and physiology of the anterior eye. Cont Lens Anterior Eye. 2021;44(2):132-56. doi: 10.1016/j.clae.2021.02.009, PMID 33775375.

Kels BD, Grzybowski A, Grant Kels JM. Human ocular anatomy. Clin Dermatol. 2015;33(2):140-6. doi: 10.1016/j.clindermatol.2014.10.006, PMID 25704934.

Bremond Gignac D, Chiambaretta F, Milazzo S. A European perspective on topical ophthalmic antibiotics: current and evolving options. Ophthalmol Eye Dis. 2011;3:29-43. doi: 10.4137/OED.S4866, PMID 23861622.

Maia AS, Castro PML, Tiritan ME. Integrated liquid chromatography method in enantioselective studies: biodegradation of ofloxacin by an activated sludge consortium. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1029-1030:174-83. doi: 10.1016/j.jchromb.2016.06.026, PMID 27433982.

Abelson M, Protzko E, Shapiro A, Garces Soldana A, Bowman L. A randomized trial assessing the clinical ef fi cacy and microbial eradication of 1 % azithromycin ophthalmic solution vs tobramycin in adult and pediatric subjects with bacterial conjunctivitis. Clin Ophthalmol. 2007;1(2):177-82. PMID 19668507.

Khimdas S, Visscher KL, Hutnik CML. Besifloxacin ophthalmic suspension: emerging evidence of its therapeutic value in bacterial conjunctivitis. Ophthalmol Eye Dis. 2011;3:7-12. doi: 10.4137/OED.S4102, PMID 23861618.

Diamant JI, Hwang DG. Therapy for bacterial conjunctivitis. Ophthalmol Clin North Am. 1999;12(1):15-20. doi: 10.1016/S0896-1549(05)70145-0.

Gratieri T, Gelfuso GM, De Freitas O, Rocha EM, Lopez RFV. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm. 2011;79(2):320-7. doi: 10.1016/j.ejpb.2011.05.006, PMID 21641994.

Mandal S, Thimmasetty MK, Prabhushankar G, Geetha M. Formulation and evaluation of an in situ gel-forming ophthalmic formulations of moxifloxacin hydrochloride. Int J Pharm Investig. 2012;2(2):78-82. doi: 10.4103/2230-973X.100042, PMID 23119236.

Vijaya C, Goud KS. Ion-activated in situ gelling ophthalmic delivery systems of azithromycin. Indian J Pharm Sci. 2011;73(6):615-20. doi: 10.4103/0250-474X.100234, PMID 23112394.

Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon. 2017;3(8):e00390. doi: 10.1016/j.heliyon.2017.e00390, PMID 28920092.

Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J. Research progress of in situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14(1):1-15. doi: 10.1016/j.ajps.2018.04.008, PMID 32104434.

Nirmal HB, Bakliwal SR, Pawar SP. In situ gel: new trends in controlled and sustained drug delivery system. Int J PharmTech Res. 2010;2(2):1398-408.

Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep. 2015;93:1-49. doi: 10.1016/j.mser.2015.04.001, PMID 27134415.

Cho IS, Park CG, Huh BK, Cho MO, Khatun Z, Li Z. Thermosensitive hexanoyl glycol chitosan-based ocular delivery system for glaucoma therapy. Acta Biomater. 2016;39:124-32. doi: 10.1016/j.actbio.2016.05.011, PMID 27163401.

Moisseiev E, Loberman D, Zunz E, Kesler A, Loewenstein A, Mandelblum J. Pupil dilation using drops vs gel: A comparative study. Eye (Lond). 2015;29(6):815-9. doi: 10.1038/eye.2015.47, PMID 25857606.

Dey S, Gunda S, Mitra AK. Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther. 2004;311(1):246-55. doi: 10.1124/jpet.104.069583, PMID 15175422.

Winter U, Buitrago E, Mena HA, Del Sole MJ, Laurent V, Negrotto S. Pharmacokinetics, safety, and efficacy of intravitreal digoxin in preclinical models for retinoblastoma. Invest Ophthalmol Vis Sci. 2015;56(8):4382-93. doi: 10.1167/iovs.14-16239, PMID 26176875.

Bhalerao H, Koteshwara KB, Chandran S. Levofloxacin hemihydrate in situ gelling ophthalmic solution: formulation optimization and in vitro and in vivo evaluation. AAPS PharmSciTech. 2019;20(7):272. doi: 10.1208/s12249-019-1489-6, PMID 31372767.

Ameeduzzafar, Imam SS, Bukhari SNA, Ali A. Preparation and evaluation of novel chitosan: gelrite ocular system containing besifloxacin for topical treatment of bacterial conjunctivitis: scintigraphy, ocular irritation and retention assessment. Artif Cells Nanomed Biotechnol. 2018;46(5):959-67. doi: 10.1080/21691401.2017.1349779.

Cao F, Zhang X, Ping Q. New method for ophthalmic delivery of azithromycin by poloxamer/Carbopol-based in situ gelling system. Drug Deliv. 2010;17(7):500-7. doi: 10.3109/10717544.2010.483255, PMID 20500130.

Fukaya Y, Kurita A, Tsuruga H, Naito A, Nakaya S, Sato M. Antibiotic effects of WP-0405, a thermo-setting ofloxacin gel, on methicillin-resistant staphylococcus aureus keratitis in rabbits. J Ocul Pharmacol Ther. 2006;22(4):258-66. doi: 10.1089/jop.2006.22.258, PMID 16910867.

Shi H, Wang Y, Bao Z, Lin D, Liu H, Yu A. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. Int J Pharm. 2019;570:118688. doi: 10.1016/j.ijpharm.2019.118688, PMID 31513870.

Khan S, Warade S, Singhavi DJ. Improvement in ocular bioavailability and prolonged delivery of tobramycin sulfate following topical ophthalmic administration of drug-loaded mucoadhesive microparticles incorporated in thermosensitive in situ Gel. J Ocul Pharmacol Ther. 2018;34(3):287-97. doi: 10.1089/jop.2017.0079, PMID 29211593.

Li J, Zhao H, Okeke CI, Li L, Liu Z, Yin Z. Comparison of systemic absorption between ofloxacin ophthalmic in situ gels and ofloxacin conventional ophthalmic solutions administration to rabbit eyes by HPLC-MS/MS. Int J Pharm. 2013;450(1-2):104-13. doi: 10.1016/j.ijpharm.2013.04.018, PMID 23612359.

Liu Z, Yang XG, Li X, Pan W, Li J. Study on the ocular pharmacokinetics of ion-activated in situ gelling ophthalmic delivery system for gatifloxacin by microdialysis. Drug Dev Ind Pharm. 2007;33(12):1327-31. doi: 10.1080/ 03639040701397241, PMID 18097806.

Nanjwade BK, Deshmukh RV, Gaikwad KR, Parikh KA, Manvi FV. Formulation and evaluation of micro hydrogel of moxifloxacin hydrochloride. Eur J Drug Metab Pharmacokinet. 2012;37(2):117-23. doi: 10.1007/s13318-011-0070-9, PMID 22015966.

Patel N, Thakkar V, Metalia V, Baldaniya L, Gandhi T, Gohel M. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using an application of quality by design concept. Drug Dev Ind Pharm. 2016;42(9):1406-23. doi: 10.3109/03639045.2015.1137306.

Sayed EG, Hussein AK, Khaled KA, Ahmed OAA. Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system. Drug Des Dev Ther. 2015;9:1427-35. doi: 10.2147/DDDT.S80697, PMID 25792803.

Nair AB, Shah J, Jacob S, Al-Dhubiab BE, Sreeharsha N, Morsy MA. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PLOS ONE. 2021;16(3):e0248857. doi: 10.1371/ journal.pone.0248857, PMID 33739996.

Honkanen R, Nemesure B, Huang L, Rigas B. Diagnosis of dry eye disease using principal component analysis: A study in animal models of the disease. Curr Eye Res. 2021;46(5):622-9. doi: 10.1080/02713683.2020.1830115, PMID 33445973.

Bhattacharya D, Ning Y, Zhao F, Stevenson W, Chen R, Zhang J. Tear production after bilateral main lacrimal gland resection in rabbits. Invest Ophthalmol Vis Sci. 2015;56(13):7774-83. doi: 10.1167/iovs.15-17550, PMID 26641554.

Kalam MA, Iqbal M, Alshememry A, Alkholief M, Alshamsan A. UPLC-MS/MS assay of tedizolid in rabbit aqueous humor: application to ocular pharmacokinetic study. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1171:122621. doi: 10.1016/j.jchromb.2021.122621, PMID 33721809.

Halvorson J, Lenhoff AM, Dittmann M, Stoll DR. Implications of turbulent flow in connecting capillaries used in high performance liquid chromatography. J Chromatogr A. 2018;1536:185-94. doi: 10.1016/j.chroma.2016.12.084, PMID 28073451.

Wu C, Qi H, Chen W, Huang C, Su C, Li W. Preparation and evaluation of a Carbopol/HPMC-based in situ gelling ophthalmic systems for puerarin. Yakugaku Zasshi. 2007;127(1):183-91. doi: 10.1248/yakushi.127.183, PMID 17202799.

Pijls RT, Sonderkamp T, Daube GW, Krebber R, Hanssen HHL, Nuijts RMMA. Studies on a new device for drug delivery to the eye. Eur J Pharm Biopharm. 2005;59(2):283-8. doi: 10.1016/j.ejpb.2004.08.011, PMID 15661500.

Kumar A, Srivastava A, Galaev IY, Mattiasson B. Smart polymers: physical forms and bioengineering applications. Prog Polym Sci. 2007;32(10):1205-37. doi: 10.1016/j.progpolymsci.2007.05.003.

Ruponen M, Urtti A. Undefined role of mucus as a barrier in ocular drug delivery. Eur J Pharm Biopharm. 2015;96:442-6. doi: 10.1016/j.ejpb.2015.02.032, PMID 25770770.

Smith M. Antibiotic resistance mechanisms. Journeys Med Res Three Cont Over 50 Y. 2017;95:9.



How to Cite




Review Article(s)

Most read articles by the same author(s)