MORAXELLA OSLOENSIS MEDIATED SYNTHESIS OF TIO2 NANOPARTICLES

Authors

  • Valli Nachiyar C. Department of Biotechnology, Sathyabama University, Sholinganallur, Chennai 600119
  • Vijayalakshmi R.
  • Nivedha Kumar
  • Bavanilatha M.
  • Swetha Sunkar

Keywords:

Moraxella osloensis, biogenesis, TiO2 NP, characterization, cytotoxicity

Abstract

Objective: The main idea behind the present investigation is to explore the ability of Moraxella osloensis to reduce Titanium dioxide to nanosizes in a facile manner.

Methods: The bacterium was grown in nutrient broth for 24 hr. The culture supernant was used for the bioreduction process. The synthesized nanoparticles were characterised by instrumental analyses namely FTIR, SEM and XRD. Toxicity of the nanoparticles was tested against HaCaT and Hep2 cell lines.

Results: Moraxella osloensis with the dye degrading ability was found to be capable of reducing bulk Titanium dioxide to nanostructure. These biogenic TiO2 nanoparticles (TiO2 NPs) were in the size range of 60–150 nm with the average size of 72 nm. The particles were found to irregularly shaped and uniformly dispersed with less aggregation. In addition, XRD analysis indicated the presence of titanium beta. FTIR confirmed the involvement of proteins in the bioreduction and stabilization. Nano TiO2 was found to be more toxic against HaCaT and Hep2 cell lines than its bulk counterpart.

Conclusion: Moraxella osloensis successfully synthesised TiO2 NPs in environmentally safe and cost effective method in an extracellular fashion.

Keywords: Moraxella osloensis, Biogenesis, TiO2 NP, Characterization, Cytotoxicity

Downloads

Download data is not yet available.

References

Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 2011;169:59-79.

Ahmad R, Sardar M. TiO2 nanoparticles as an antibacterial agent against E. coli. Int J Innovative Res Sci Eng Technol 2013;2:3569-74.

Rai RV, Bai JA. Nanoparticles and their potential application as antimicrobials. Science against microbial pathogens: communicating current research and technological advances. A. Méndez-Vilas (Ed.) @ Formatex; 2011. p. 197-209.

Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticls: a review of current toxicological data. Part Fiber Toxicol 2013;10:15.

Jha AK, Prasad K, Kulkarni AR. Synthesis of TiO2 nanoparticle using microorganisms. Colloids Surf B 2009;71:226-9.

Kulkarni N, Muddapur U. Biosynthesis of metal nanoparticles: a review. J Nanotechnol 2014. Doi.Org/10.1155/2014/510246. [Article in Press]

Prasad K, Jha AK, Kulkarni AR. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2007;2:248-50.

Dhandapani P, Maruthamuthu S, Rajagopal G. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J Photochem Photobiol B 2012;110:43-9.

Swetha S, Valli Nachiyar, Rashmi Lerensha, Renugadevi K. Biogenesis of TiO2 nanoparticles using endophytic Bacillus cereus. J Nanopart Res 2014;16:2681.

Bansal V, Rautray D, Bharde A, Ahire K, Sanyal A, Ahmad A, et al. Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 2005;15:2583-9.

Khan SA, Ahmad A. Phase, size and shape transformation by fungal biotransformation of bulk TiO2. Chem Eng J 2013;230:367-71.

Raliya R, Biswas P, Tarafdar JC. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L). Biotechnol Rep 2015:5:22-6.

Sundarajan M, Gowri S. Green synthesis of Titanium dioxide nanoparticles by Nyctanthes Arbor-tristis leaves extract. Chalcogenide Lett 2011;8:447-51.

Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett 2012;68:115-7.

Karunya A, Rose C, Valli Nachiyar C. Biodegradation of the textile dye Mordant Black 17 (Calcon) by Moraxella osloensis isolated from textile effluent-contaminated site. World J Microbiol Biotechnol 2014;30:915-24.

Jayaseelan C, Rahuman AA, Roopan SM, Kirthi A, Venkatesan J, Kim SK, et al. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A 2013;107:82-9.

Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, et al. Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 2011;65:2745-7.

Babitha S, Purna Sai K. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent. Mater Res Bull 2013;48:4738-42.

Wan M, Li W, Long Y, Tua Y. Electrochemical determination of tryptophan based on Si-doped nano TiO2 modified glassy carbonelectrode. Anal Methods 2012;4:2860-5.

Wu J, Yue G, Xiao Y, Lin J, Huang M, Lan Z, et al. An ultraviolet responsive hybrid solar cell based on titania/poly (3-hexylthiophene). Sci Rep 2013. Doi:10.1038/srep01283. [Article in Press]

Web ref. Titanium Oxide (Titania, TiO2) Nanoparticles–Properties, Applications. Available from: http://www. azonano.com/article.aspx?ArticleID=3357. [Last accessed on 01 Dec 2015].

Web ref. About Titanium Dioxide. Available from: http://www.cinkarna.si/si/files/default/tio2/tdma_about_tio2__20120914.pdf. [Last accessed on 01 Dec 2015].

Bavanilatha M, Karthick Raja N, Bhattacharya A. Evaluation of toxic effect of biogenic silver nanoparticles on chick embryo. Int J Chem Pharm Res 2014;6:230-5.

Published

01-05-2016

How to Cite

C., V. N., V. R., N. Kumar, B. M., and S. Sunkar. “MORAXELLA OSLOENSIS MEDIATED SYNTHESIS OF TIO2 NANOPARTICLES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 5, May 2016, pp. 397-00, https://innovareacademics.in/journals/index.php/ijpps/article/view/10542.

Issue

Section

Short Communication(s)