ANTI PROLIFERATIVE ACTIVITY OF CALAMUS ROTANG AS A SPOTLIGHT ON EHRLICH’S ASCITES CARCINOMA TREATED PERITONEAL AS WELL AS SOLID TUMOR MODEL


Subeer Roy, Diksha Kumari, Mainak Chakraborty, Pallab Kanti Haldar

Abstract


Objective: Methanol extract of Calamus rotang (MECR) root was appraised as a spotlight for the candidate of anticancer activity through the vehicle (Ehrlich Ascites Carcinoma) on Swiss albino mice.

Methods: In vitro cytotoxicity assay has been accessed by trypan blue and MTT assay. In vivo anticancer activity was done using EAC cells (2 × 106) where in each groups mice were 6. After treatment with MECR at the lower dose of 200 and higher dose of 400 mg/kg respectively for 9 d, half of the mice of each group were sacrificed and the rest were kept to check prolongation of life span. The anticancer potential of MECR was evaluated by tumor volume, viable and nonviable tumor cell count, tumor weight, hematological parameters, biochemical estimations and Furthermore, tissue antioxidant parameters. Besides, solid tumor activity was also inspected.

Results: In MECR treated groups (200 and 400 mg/kg) tumor volume, packed cell volume and viable cell count was significantly lessened as compared to that of the EAC control group. Life span, most reliable criteria for anticancer study, increased quite surprisingly by 50% and 100% in a dose dependant manner while compared to EAC control group. The hematological, biochemical and liver tissue antioxidant parameter are significantly (p<0.05) restored along with solid tumor case study (solid tumor volume) towards the normal level after treatment with MECR.

Conclusion: From the above study it can be inferred that the MECR has impressive anticancer activity in dose dependent way.


Keywords


MECR, MTT, EAC, Antioxidant, Anticancer, Solid tumor

| HTML | PDF |

References


Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

Srivasthava JK, Gupta S. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochem Biophys Res Commun 2006;346:447-53.

Saha P, Mazumder UK, Haldar PK, Naskar S, Kundu S, Bala A, Kar B. Anticancer activity of methanol extract of Cucurbita maxima against Ehrlich ascites carcinoma. Int J Res Pharm Sci 2011;2:52-9.

Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol 2007;9:767–76.

Basumatary SK, Ahmed M, Deka SP. Some medicinal plant leaves used by Boro (tribal) people of Goalpara district, Assam. Nat Prod Res 2004;3:88-90.

Patari P, Uddin MJ. Documentation and consensus of agreements on Indigenous knowledge of medicinal plants used by the Mog, Reang, Uchai of South Tripura: A preliminary report. J Med Plants Stud 2016;4:122-37.

Gupta A and Chaphalkas SR. Immunosuppressive activity of crude saponins from the leaves of Caloptropis gigantean, Calamus rotang and Artocarpus integrifolia. IJPSR 2015;5:1-5.

Ripa FA, Dash PR and Faruk MO. CNS depressant, analgesic and anti inflammatory activities of methanolic seed extract of Calamus rotang fruits in rat. J Pharmacogn Phytochem 2015;3:121-25.

Chakraborty M, Karmakar I, Haldar S, Nepal A, Haldar PK. Anticancer and antioxidant activity of methanol extract og Hippophae salicifolia in EAC induced swiss albino mice. IJPPS 2015;7:180-84.

Bala A, Kar B, Haldar PK, Mazumder UK, Bera S. Evaluation of anticancer activity of Cleome gynandra on Ehrlich’s ascites carcinoma treated mice. J Ethnopharmacol 2010;129:131-34.

Sur, P., Ganguly, D. K. Tea plant roots extract (TRE) as an antineoplastic agent.

Planta Med 1994. 60:106–9.

Ohkawa, H., Oishi, N. and Yagi, K. ‘Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction’. Anal Biochem 1979;95:351-58.

Kakkar, P., Das, B., Vishwanathan, P. N. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 1984;21:130–32.

Ellman, G. L. ‘Tissue sulphydryl groups’. Arch Biochem Biophys 1959;82:70-72.

Kumar RJ, Rajkapoor B, Perumal P, Dhanasekaran T, Jose MA, Jothimanivannan C. Antitumor Activity of Prosopis glandulosa Torr. on Ehrlich AscitesCarcinoma (EAC) Tumor Bearing Mice. IJPR 2011. 10:505-10.

Shimizu M, Azuma C, Taniguchi T, Murayama T. Expression of cytosolic phospholipase A2α in murine C12 cells, a variant of L929 cells, induces arachidonic acid release in response to phorbol myristate acetate and Ca2+ionophores, but not to tumor necrosis factor-α. J Pharmacol Sci 2004;96:324-32.

Bala A, Kar B, Haldar PK, Majumder UK, Bera S. Evaluation of anticancer activity of Cleome gynandra on Ehrlich’s ascites carcinoma treated mice. J Ethnopharmacol 2010;129;131–34.

Pal P, Prasad AK, Chakraborty M, Haldar S, Majumder P, Haldar PK. Evaluation of anti cancer potential of methanol extract of curcuma zedoaria. Asian J Pharm Clin Res 2015;8:271-75.

Price VE and Greenfield RE. Anemia in cancer, in: Greenstein, J. P., Haddow, A., (eds.) 20 Advances in cancer research. New York: Academic Press 1958;5:199-200.

Fenninger, LD., and Mider, G. B. in ‘Advances in cancer research’. Grenstein, J. P., and Haddow, A., (eds.) vol II. New York: Academic Press 1954 p.244.

Kathiriya K, Das EP, Kumar KB. Mathai Evaluation of antitumor and antioxidant activity of Oxalis corniculata Linn. against Ehrlich Ascites Carcinoma on mice. Iranian Journal CancerPreview 2010;3:157-65.

Bandyopadhyay, U., Das, D. and Banerjee, R. K. ‘Reactive oxygen species: Oxidative damage and pathogenesis’. Curr. Sci 1999;77:658.

Yagi K. Lipid peroxides and human diseases. Chem Physiol Lip 1991;45:337–51.

Sinclair, A. J., Barnett, A. H. and Lunie, J. ‘Free radical and auto-oxidant systems in health and disease. Br J Hosp Med 1990:43:334-44.




About this article

Title

ANTI PROLIFERATIVE ACTIVITY OF CALAMUS ROTANG AS A SPOTLIGHT ON EHRLICH’S ASCITES CARCINOMA TREATED PERITONEAL AS WELL AS SOLID TUMOR MODEL

Keywords

MECR, MTT, EAC, Antioxidant, Anticancer, Solid tumor

DOI

10.22159/ijpps.2018v10i1.21449

Date

01-01-2018

Additional Links

Manuscript Submission

Journal

International Journal of Pharmacy and Pharmaceutical Sciences
Vol 10, Issue 1, 2018 Page: 85-90

Online ISSN

0975-1491

Statistics

28 Views | 51 Downloads

Authors & Affiliations

Subeer Roy
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
India

Diksha Kumari
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
India

Mainak Chakraborty
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
India

Pallab Kanti Haldar
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
India


Article Tools



Refbacks

  • There are currently no refbacks.