• Hafrizal Riza Department of Pharmaceutics, Tanjungpura University, Pontianak, Indonesia
  • Andhi Fahrurroji Department of Pharmaceutics, Tanjungpura University, Pontianak, Indonesia
  • Arif Wicaksono Department of Pharmaceutics, Tanjungpura University, Pontianak, Indonesia
  • Ahmad Kharis Nugroho Department of Pharmaceutics, Gajah Mada University, Yogyakarta, Indonesia
  • Sudibyo Martono Department of Pharmaceutics, Gajah Mada University, Yogyakarta, Indonesia



Methyl hesperidin, nucleoside reverse transcriptase inhibitor, Autodock Vina


Objective: This study aims to analyze the methyl hesperidin physicochemical properties related to solubility and permeability, and the affinity of methyl hesperidin against reverse transcriptase HIV-1 activity as a competitive substrate.

Methods: This research was conducted using the computerized method, ChemOffice 15.0, to predict ligand physicochemical properties related to solubility and permeability, and Autodock Vina with Autodock Tools program to analyze ligand-receptor affinity.

Results: The analysis result of physicochemical properties of hesperidin and methyl hesperidin is respectively 300,27 g/Mol, 1,78, and 314,29 g/Mol, 2,04. The docking result shows that the binding energy of hesperidin, methyl hesperidin and zidovudine with receptor are respectively-8,0,-8,8 and-9,3 kcal/Mol. The type of interactions between receptor and hesperidin is van der Waals and phi-phi staked, methyl hesperidin are van der Waals, hydrogen bond, phi-sigma, and phi-phi stacked, and zidovudine is an attractive charge, hydrogen bond, and phi-sigma.

Conclusion: Methyl hesperidin has good solubility and permeability, and has affinity with the receptor, a substrate of reverse transcriptase HIV-1. 


Download data is not yet available.


Oliveira RMM, Daniel JFS, Aguiar I, Silva MFGF, Fernandes JB, Carlos RM. Structural effects on the hesperidin properties obtained by chelation to magnesium complexes. J Inorg Biochem 2013;129:35–42.

Sansone F, Alessandra R, Pasquale DG, Francesco DS, Rita PA, Maria RL. Hesperidin gastroresistent microparticles by spray-drying: preparation, characterization, and dissolution profiles. AAPS PharmSciTech 2009;10:391-401.

Prajogo B, Widiyanti P, Riza H. Effect of ethanolic extract of Justicia gendarussa Burm f against the activity of reverse transcriptase HIV enzyme in vitro. J Bahan Alam Indonesia 2014;8:384-8.

Prajogo B, Dudi S, Mulya HS. Analisis kadar gendarusin a pada tanaman budidaya Justicia gendarussa burm. f. J Farmasi Indonesia 2007;3:176-80.

Wilsen PK, Spada DS, Salvador M. Antioxidant activity of flavonoid hesperidin in chemical and biological systems. J Agric Food Chem 2005;53:4757-61.

Garg A, Garg S, Zaneveld LJD, Singla AK. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res 2001;15:655–69.

Pommier Y, Johnson AA, Marchand C. Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discovery 2005;4:236-48.

Kementerian Kesehatan Republik Indonesia, Laporan Situasi Perkembangan HIV and AIDS di Indonesia sampai dengan Juni; 2011. Available from: download/lT2Menkes2011.pdf. [Last accessed on 13 Nov 2011]

World Health Organization, Global Summary of the HIV AIDS epidemic; 2009. Available from: data/2009_global_summary.png [Last accessed on 10 Nov 2011]

Flexner C. HIV Protease Inhibitor. N Engl J Med 1998;338:1281-93.

Feher M, Schmidt JM. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 2003;43:218-27.

Block JH. Drug design strategies. In: Beale JM, Block JH. Eds. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry. 12th Ed. Philadelphia: Lippincott Williams and Wilkins; 2011. p. 38-9.

Jensen F. Introduction to computational chemistry. 2nd Ed. Hoboken: United States: John Wiley and Sons Ltd; 2006. p. 69-416.

Brian D. Herman, Nicolas Sluis-Cremer. Molecular Pharmacology of Nucleoside and Nucleotide HIV-1 Reverse Transcriptase Inhibitors, Pharmacology. Dr. Luca Gallelli Ed. Pittsburgh: Intech; 2012. p. 63-80.

Alberto C, Mattia S, Ivana M, Antonella C, Stefano M. Dock bench: an integrated informatic platform bridging the gap between the robust validation of docking protocols and virtual screening simulations. Molecules 2015;20:9977-93.

Rajesh CS. Comparative study of the effect of Swertia chirata leaf extract on Indinavir treated rats. Asian J Pharm Clin Res 2017;10:339-42.

Pradeep PS, Shrungesh Kumar TO, Prashantha N, Mahadevan KM. Synthesis, in vitro antibacterial, toxicity and molecular docking anticancer activity of novel N-[(2-chloroquinolin-3-yl) methylidene]-2-aniline Schiff bases. Int J Curr Pharm Res 2015;7:37-46.

Jensen F. Introduction to Computational Chemistry. 2nd Ed. Denmark: John Wiley and Sons, Ltd; 2007. p. 1-21.

Ruiter JD. Overview of antidiabetic the agents. Endocrine Pharmacotherapy Module. Spring; 2013. p. 3-29.

Pendota SC, Ndhala AR, Aremu AO, Aderogba MA, Van Staden J. Anti-inflammatory, antioxidant and in silico studies of Buddleja salviifolia (L). Lam leaf constituents. S Afr J Bot 2014;93:79-85.

Mallya SD, Kamath VG, Nair S, Kamath A. Does providing free antiretroviral therapy ensure optimal adherence among people living with human immunodeficiency virus/acquired immune-deficiency syndrome. Asian J Pharm Clin Res 2016;19:1-4.



How to Cite

Riza, H., A. Fahrurroji, A. Wicaksono, A. K. Nugroho, and S. Martono. “DOCKING STUDY OF METHYL HESPERIDIN AS NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITOR”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 10, no. 3, Mar. 2018, pp. 85-89, doi:10.22159/ijpps.2018v10i3.22724.



Original Article(s)