CHARACTERIZATION OF KAPOK PERICARPIUM MICROCRYSTALLINE CELLULOSE PRODUCED OF ENZYMATIC HYDROLYSIS USING PURIFIED CELLULASE FROM TERMITE (MACROTERMES GILVUS)

  • YULIANITA PRATIWI INDAH LESTARI Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Pondok Cina, Depok, 16424, West Java, Indonesia
  • HERMAN SURYADI Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Pondok Cina, Depok, 16424, West Java, Indonesia
  • MIRAJUNNISA Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Pondok Cina, Depok, 16424, West Java, Indonesia
  • WIBOWO MANGUNWARDOYO Laboratory of Microbiology, Departement of Biology, Faculty of Mathematics and Sciences, Universitas Indonesia, Pondok Cina, Depok, 16424, West Java, Indonesia
  • SUTRIYO Laboratory of Technology of Pharmacy, Universitas Indonesia, Pondok Cina, Depok, 16424, West Java, Indonesia
  • ARRY YANUAR Laboratory of Biomedical Computation, Faculty of Pharmacy, Universitas Indonesia, Pondok Cina, Depok, 16424, West Java, Indonesia

Abstract

Objective: This study aimed to increase the yield of microcrystalline cellulose (MCC) from kapok pericarpium alpha-cellulose produced by enzymatic hydrolysis using purified cellulase from Termites (Macrotermes gilvus) and to compare the characteristics with the reference product.


Methods: In this research, MCC was prepared from kapok pericarpium powder through the chemical isolation process of alpha-cellulose, followed by enzymatic hydrolysis with purified cellulase from Macrotermes gilvus. The yield was improved by using purified cellulase in optimized temperature, pH, and hydrolysis time. Identification was carried out by using ZnCl and infrared spectrophotometry, followed by characterization of MCC include particle size analysis (PSA) and diffracto­gram pattern (X-Ray Diffraction). The results were compared with Avicel PH 101 as the reference product.


Results: Purified cellulase from Macrotermes gilvus showed high cellulose activity. Cellulose in the concentration of 11.743 U/ml formed 49 mm clear zone area with cellulolytic index 7.16 that similar to the formed clear zone area of Trichoderma reesei (50 mm), the optimum hydrolysis condition was achieved at 50 °C, pH 6.0, in 2 h, which produced 80% yield of MCC. Produced MCC was analyzed with ZnCl and FTIR spectrum resulting in positive results, similar to reference. The results of the organoleptic test, particle size analysis, and diffracto­gram pattern (X-Ray Diffraction) showed crystalline characteristics of MCC is similar to the reference (Avicel PH 101).


Conclusion: Cellulase Macrotermes gilvus yielded 80% MCC and higher enzymatic activity than Trichoderma reesei. Based on the organoleptic test, particle size analysis, and diffracto­gram pattern observation, MCC from kapok pericarpium has shown similar characteristics to reference (Avicel pH 101) and might be potential to be further developed.

Keywords: Cellulase purification, Enzymatic hydrolysis, Kapok pericarpium, Macrotermes gilvus, MCC characterization, Microcrystalline cellulose

Downloads

Download data is not yet available.

References

1. Friday ET, James O, Gabriel A. In vitro growth and inhibition studies of ceiba pentandra leaf: a common vegetable in nigeria. Int J Plant Physiol Biochem 2011;3:1.
2. Astika JM, Chandrawati C, Hendrajaya I, Soemarno, Yogi O. The exploration of alpha-cellulose in kapok fruit as raw material for rocket propellant production. Agri Res Tech: Open Access J 2017;12:1-8.
3. Hindi SSZ. Microcrystalline cellulose: the inexhaustible treasure for the pharmaceutical industry. Nanosci Nanotech Res 2017;4:17.
4. Fuadi AM, Harismah K. Perbandingan efektifitas pembuatan glukosa dari kertas bekas secara hidrolisis asam dan enzim. Jurn Tek Bah Al 2017;1:6.
5. Suryadi H, Sutriyo, Sari HR, Rosikhoh D. Preparation of microcrystalline cellulose from water hyacinth powder by enzymatic hydrolysis using cellulase of local isolate. J Young Pharm 2017;9:19-23.
6. Fagbohunka BS, Okonji RE, Adenike AZ. Purification and characterization of cellulase from Termite Ametermes eveuncifer (Silverstri) soldiers. Int J Bio 2016;9:2-7.
7. Archibalt FS, Bourbonais R, Jurasek L, Paice MG, Reid ID. Kraft pulp bleaching and delignificatonby Trametes versicolor. J Biotech 1997;53:215-36.
8. Suryadi H, Lestari YPI, Mirajunnisa, Yanuar A. Potential of cellulase of Chaetomium Globosum for preparation and characterization of microcrystalline cellulose from water hyacinth (Eichhornia crassipes). Int J Appl Pharm 2019;11:140-6.
9. Begum MF, Absar N. Purification and characterization of intracellular cellulase from Aspergillus oryzae ITCC-4857.01. The Kor Soc of Myc 2009;37:121-7.
10. Hasanah N, Saskiawan I. Aktivitas selulase isolat jamur dari limbah media tanam jamur merang. Pros Sem Nas Masy Biodiv Indon 2015;1:1110-5.
11. United States Pharmacopoeial Convention. The United States Pharmacopeia, USP 30/The National Formulary, NF 25. Rockville, MD: U. S. Pharmacopeial Convention. Inc; 2007. p. 2635.
12. Harmita. Analisis Fisiko Kimia. Depok: Departemen Farmasi FMIPA Universitas Indonesia; 2006.
13. British Pharmacopoeia Commission. British Pharmacopoeia. London: Stationery Office; 2008.
14. Balat M, Balat H, Oz C. Progress in bioethanol processing. Prog Energy Combust Sci 2008;34:551-73.
15. Moreira MT, Viacava C, Vidal G. Fed-batch decolorization of poly R-478 by Trametes versicolor. Braz Arch Biol Technol 2004;47:179-83.
16. Knezevic A, Stajic M, Jovanovic VM, Kovacevic V, Cilerdzic J, Milovanovic I, et al. Induction of wheat straw delignification by Trametes species. Sci Rep 2016;6:1-12.
17. Bollag DM, Edelstein SJ, Protein methods willey-liss inc. New York; 1991.
18. Rousseau RW, Ferrell JK, Reardon RF. Synthesis of diethylaminoethyl cellulose on cotton fabric. Indust Eng Chem Prod Res Dev 1986;3:250–2.
19. Boyer RF. Modern experimental biochemistry. 2nd Edition. California: The Benjamin Cummings Publishing Company; 1993.
20. Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006;24:452-81.
21. Mandels M, Reese ET. Introduction of cellulose in fungi by cellobiose. J Bact 1976;79:816-26.
22. Whittaker JR. Principles of enzymology for the food sciences. 2nd Edition. New York: Marcel Decker; 1994. p. 67-70.
23. Meryandini A, Widosari W, Maranatha B, Sunarti TC, Rachmania N, Satria H. Isolasi bakteri selulolitik dan karakterisasi enzimnya. Makara J Sci 2009;13:33-8.
24. Deng T, Cui X, Qi Y, Wang Y, Hou X, Zhu Y. Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water. Chem Commun 2012;48:5494-6.
25. Das K, Ray D, Bandyopadhyay N, Ghosh T, Mohanty A, Misra M. A study of the mechanical: thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 2009;16:783-93.
26. Mandal A, Chakrabarty D. Isolation of nanocellulose from wax sugarcane bagasse (SCB) and its characerization. Carbohydrate Polymer 2011;86:1291-9.
27. Klemm D, Philipp B, Heinze U, Heinze T, Wegenknect W. Comprehensive cellulose chemistry. Willey FCH 1998;2:31-43.
28. Aulton ME. Aulton’s pharmaceutics: the design and manufactures of medicines. 3rd Edition. New York: Churchill Livingstone Elsevier; 2007. p. 412, 450.
Statistics
117 Views | 84 Downloads
Citatons
How to Cite
LESTARI, Y. P. I., H. SURYADI, MIRAJUNNISA, W. MANGUNWARDOYO, SUTRIYO, and A. YANUAR. “CHARACTERIZATION OF KAPOK PERICARPIUM MICROCRYSTALLINE CELLULOSE PRODUCED OF ENZYMATIC HYDROLYSIS USING PURIFIED CELLULASE FROM TERMITE (MACROTERMES GILVUS)”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 12, no. 3, Jan. 2020, pp. 7-14, doi:10.22159/ijpps.2020v12i3.36468.
Section
Original Article(s)