• Dhandayuthapani Kandavel Department of Botany, Periyar EVR College (Autonomous), Tiruchirappalli - 620023.
  • Soundarapandian Sekar Department of Industrial Biotechnology, Bharathidasan University, Tiruchirappalli - 620024, Tamilnadu


Objective: To isolate endophytic fungi from various parts of Phyllanthus amarus (family Phyllanthaceae) and to probe for production of the bioactive compounds Phyllanthin and Hypophyllanthin.

Methods: The fungi were isolated using Potato Dexotrose Agar (PDA) and a novel P. amarus powder amended (2 g/l) PDA (PPDA). The isolates were cultured in liquid medium and after liquid-liquid extraction they were screened for production of Phyllanthin, Hypophyllanthin and/or other related compounds using Shimadzu HPLC system equipped with PDA and UV detector at 230 nm using phosphate buffer (pH 2.8) and acetonitrile in a gradient elution at a flow rate of 1.5 ml/min. Isolates which showed close overlaps were subjected to HPTLC in Pre-coated silica gel F60254 on aluminium plates using Linomat V, Camag TLC applicator and Toluene: Ethyl acetate (2: 1) as solvent system. Developed plates were sprayed with 10% v/v sulphuric acid in methanol. Isolates which showed promising results were identified using morphological characters and ITS sequences. The sequences were submitted to GenBank.

Results: Twenty three endophytic fungal isolates embracing eighteen from PDA and five from PPDA were obtained with roots serving as major home. HPLC analyses resulted in shortlisting of four isolates SATR2-A, SATR1-A, KOPS4-A and SKTS2-B and HPTLC analyses exposed further agreement. Bands apprise putative role of these endophytes in bi °Chemical synthesis of phyllanthin and hypophyllanthin. Morphological characters and ITS sequences identified the isolates as Fusarium oxysporum (SATR2-A), Gibberella moniliformis (Synonym: Fusarium verticillioides, SATR1-A), Alternaria sp. (KOPS4-A) and Edenia gomezpompae (SKTS2-B).

Conclusion: Phyllanthin and Hypophyllanthin, the twin magic bullets from P. amarus has widespread clinical importance and especially as hepatoprotectives. The study enlightens the role of endophytic fungi from P. amarus which can synthesize these bioactive compounds. This is the first such report from this plant and further research will result in confirming the potential.


Keywords: Phyllanthus amarus, Endophytic Fungi, Phyllanthin, Hypopllanthin, HPLC, HPTLC


Download data is not yet available.


1. De Bary A. Morphologie und physiologie der pilze, Flechten, und Myxomyceten. In: Hofmeister W. editor. Handbook of physiological botany. Vol. II. Germany; 1866.
2. Freeman EM. The seed fungus of Lolium temulentum L. Phil Trans R S °C Lond (Biol) 1904;196:1-27.
3. Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Lelie DVD. Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 2006;23:175–07.
4. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep 2001;18:448-59.
5. Strobel GA. Endophytes as sources of bioactive products. Microb Infect 2003;5:535–44.
6. Strobel GA, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 2003;67:491-502.
7. Strobel GA, Daisy B, Castillo U, Harper J. Natural products from endophytic microorganisms. J Nat Prod 2004;67:257–68.
8. Gunatilaka AAL. Natural products from plant associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 2006;69:509-26.
9. Stierle A, Strobel GA, Stierle DB. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Sci 1993;260:214-6.
10. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 2005;68:1717-9.
11. Shweta S, Zühlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, et al. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phyt °Chem 2010;71:117-22.
12. Yang X, Guo S, Zhang L, Shao H. Selection of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat Prod Res Dev 2003;15:419–22.
13. Kour A, Shawl AS, Rehman S, Sultan P, Qazi, PH, Suden P, et al. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 2008;24:1115–21.
14. Guo B, Li H, Zhang L. Isolation of the fungus producing vinblastine. J Yunnan Univ (Nat Sci Edit)1998;20:214-5.
15. Kusari S, Lamshöft M, Zühlke S, Spiteller M. An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 2008;71:159-62.
16. Kusari S, Verma VC, Lamshöft M, Spiteller M. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 2012;28:1287-94.
17. Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, et al. Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie van Leeuwenhoek 2012;101:323-9.
18. De B, Datta PC. Pharmacognostic evaluation of Phyllanthus amarus. Int J Crude Drug Res 1990;28:81-8.
19. Patel JR, Tripathi P, Sharma V, Chauhan NS, Dixit VK. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. J Ethnopharmacol 2011;138:286-13.
20. Harworth RD. The chemistry of the lignan group of natural products. J Chem S °C 1942;448-56.
21. Row LR, Satyanarayana P, Subba Rao GSR. Crystalline constituents of Euphorbeaceae–the synthesis and absolute configuration of phyllanthin. Tetrahedron 1967;23:1915-8.
22. Row LR, Satyanarayana P, Srinivasulu C. Revised structure of hypophyllanthin from Phyllanthus niruri Linn. Tetrahedron 1970;26:3051-7.
23. Shyamsundar KV, Singh B, Thakur R, Hussain A, Kiso Y, Hikino H. Antihepatotoxic principles of Phyllanthus niruri herbs. J Ethnopharmacol 1985;14:41-4.
24. Khatoon S, Rai V, Rawat AKS, Mehrotra S. Comparative pharmacognostic studies of three Phyllanthus species. J Ethnopharmacol 2006;104:79-86.
25. Mathiyazhagan S, Kavitha K, Nakkeeran S, Chandrasekar G, Manian K, Renukadevi P, et al. PGPR mediated management of stem blight of Phyllanthus amarus (Schum. and Thonn.)caused by Corynespora cassiicola (Berk and Curt) Wei. Arch Phytopathol Plant Prot 2004;37:183-99.
26. Gilman JC. A manual of soil fungi. The Iowa State Unviersity Press; 1966.
27. Nagamani A, Kunwar IK, Manoharachary C. Handbook of Soil Fungi. New Delhi: IK International Publishing House Pvt Ltd; 2006.
28. Karakousis A, Langridge P. A high-throughput plant DNA extraction method for marker analysis. Plant Mol Biol Report 2003;21:95-5.
29. Schulz B, Boyle C, Draeger S, Rommert A, Krohn K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 2002;106:996-04.
30. Kusari S, Pandey SP, Spiteller M. Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phyt °Chem 2013;91:81-7.
31. Schroeckh V, Scherlach K, Nutzmann HW, Shelest E, Schmidt-Heck W, Schuemann J, et al. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Pr °C Natl Acad Sci USA 2009;106:14558-63.
32. Scherlach K, Hertweck C. Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 2009;7:1753-60.
713 Views | 3069 Downloads
How to Cite
Kandavel, D., and S. Sekar. “ENDOPHYTIC FUNGI FROM PHYLLANTHUS AMARUS SCHUM. & THONN. CAPABLE OF PRODUCING PHYLLANTHIN, HYPOPHYLLANTHIN AND/OR RELATED COMPOUNDS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 7, no. 5, May 2015, pp. 253-7, https://innovareacademics.in/journals/index.php/ijpps/article/view/5192.
Original Article(s)