• Samar Fatma
  • Kalainila P
  • Ernest Ravindran
  • Renganathan S Anna University



Objective: Development of green nanotechnology is generating interest of researchers toward eco-friendly biosynthesis of nanoparticles (NPs). In
this study, biosynthesis of stable copper (Cu) NPs was done using Ocimum sanctum leaf extract.

Materials and Methods: First, we prepared leaf extract of Passiflora foetida in deionized water. This extract added to 20 mMol of Cu sulfate solution, and we observed the change in color of the solution from colorless to colored solution; this indicates that there is a formation of CuNPs.

Results: These biosynthesized CuNPs were characterized with the help of ultraviolet visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The spectroscopic analysis of synthesized CuNPs showed the maximum absorbance at 350 nm indicating the presence of biosynthesized CuNPs in the reaction mixture.

Conclusion: It was observed that the P. foetida leaf extract can reduce Cu ions into CuNPs within 8-10 minutes of reaction time. Thus, this method can
be used for rapid and eco-friendly biosynthesis of stable CuNPs.

Keywords: Copper nanoparticles, Passiflora foetida, Copper sulfate, Biosynthesis.


Download data is not yet available.


Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS. Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res 2010;1(2):36-40.

Yang G, Chai S, Xiong X, Zhang S, YU L, Zhang P. Preparation and tribological properties of surface modified Cu nanoparticles. Trans Nonferrous Met Soc China 2012;22(2):366-72.

Borkow G. Molecular mechanisms of enhanced wound healing by copper oxide impregnated dressings. Wound Repair Regen 2010;18(2):266-75.

Borkow G, Zatcoff RC, Gabbay J. Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Med Hypotheses 2009;73(6):883-6.

Li Y, Liang J, Tao Z, Chen J. CuO particles and plates: Synthesis and gas-sensor application. Mater Res Bull 2008;43(8-9):2380-5.

Carnes LC, Klabunde KJ. The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A Chem 2003;194(1-2):227-36.

Guo Z, Liang X, Pereira T, Scaffaro R, Hahn HT. CuO nanoparticle filled vinyl-ester resin nanocomposites: Fabrication, characterization and property analysis. Compos Sci Technol 2007;67(10):2036-44.

Choi H, Park SH. Seedless growth of free-standing copper nanowires by chemical vapor deposition. J Am Chem Soc 2004;126:6248-9.

Huang L, Jiang H, Zhang J, Zhang Z, Zhang P. Synthesis of copper nanoparticles containing diamond like carbon films by electrochemical method. Electrochem Commun 2006;8(2):262-6.

Joshi SS, Patil SF, Iyer V, Mahumuni S. Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater 1998;10(7):1135-44.

Aruldhas N, Raj CP, Gedanken A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 1998;10(5):1446-52.

Hashemipour H, Rahimi ME, Pourakbari R, Rahimi P. Investigation on synthesis and size control of copper nanoparticle via electrochemical and chemical reduction method. Int J Phys Sci 2011;6(18):4331-6.

Surmawar NV, Thakare SR, Khaty NT. One-pot, single step green synthesis of copper nanoparticles: SPR nanoparticles. Int J Green Nanotechnol 2011;3(4):302-8.

Honary S, Barabadi H, Gharaeifathabad E, Naghibi F. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Biostruct 2012;7(3):999-1005.

Gunalan S, Sivaraj R, Venkatesh R. Aloe barbadensis miller mediated green synthesis of monodisperse copper oxide nanoparticles: Optical properties. Spectrochim Acta A Mol Biomol Spectrosc 2012;97:1140-4.

Aseervatham J, Palanivelu S, Panchanadham S. Semecarpus anacardium (Bhallataka) alters the glucose metabolism and energy production in diabetic rats. Evid Based complement Alternat Med 2011;10(4):1-9.

Sasikala V, Saravana S Parimelazhagan T. Evaluation of antioxidant potential of different parts of wild edible plant Passiflora foetida L. J Appl Pharm Sci 2011;1(4):89-96.

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45(4):493-6.

Zhu H, Zhang C, Yin Y. Nanotechnology 2005;16:3070.

Ashajyothi C, Kudsi J, Kelmani CR. Biosynthesis and characterization of copper nanoparticles from Enterococcus faecalis. Int J Pharm Bio Sci 2014;5(4):204-11.

Saranyaadevi K, Subha V, Ravindran RS, Renganathan S. Green synthesis and characterization of silver nanoparticle using leaf extract of Capparis zeylanica. Asian J Clin Res 2014;7(2):44-8.

Angrasan JK, Subbaiya R. Biosynthesis of copper nanoparticle by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 2014;3(9):768-74.

Martis P, Fonseca A, Mekhalif Z, Delhalle J. Optimization of cuprous oxide nanocrystals deposition on multiwalled carbon nanotubes. J Nanopart Res 2010;12:439-48.

Waseda Y, Matsubara E, Shinoda K. X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems. Berlin: Springer; 2011.

Zain NM, Stapley AG, Shama G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym 2014;112:195-202.

Pavani KV, Srujana N, Preethi G, Swati T. Synthesis of copper nanoparticles by Aspergillus species. Lett Appl Nanobioscience 2013;2(2):110-3.

Gopinath M, Subbaiya R, Selvam MM, Suresh D. Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 2014;3(9):814-8.



How to Cite

Fatma, S., K. P, E. Ravindran, and R. S. “GREEN SYNTHESIS OF COPPER NANOPARTICLE FROM PASSIFLORA FOETIDA LEAF EXTRACT AND ITS ANTIBACTERIAL ACTIVITY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 4, Apr. 2017, pp. 79-83, doi:10.22159/ajpcr.2017.v10i4.15744.



Original Article(s)