• Shruti Tyagi Woman Scientist-A (WOS-A), Department of Biotechnology, Meerut Institute of Engineering and Technology
  • Arvind Kumar Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh
  • Pankaj K Tyagi Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh


Objective: This study demonstates  a simple, cost effective protocol  for biosynthesis of stable silver (Ag) and gold (Au) nanoparticles from Hibiscus Rosa sinesis and their comparison by applying antibacterial activities against nine pathogenic bacterial species.

Methods: Silver (Ag) and gold (Au) nanoparticles were biosynthesized from Hibiscus Rosa sinesis were characterized by UV–VIS spectroscopy, FTIR and TEM. The antibacterial activities  of AgNPs  and AuNPs were evaluated against  9 pathogenic bacterial species  Pseudomonas aeroginosa, Bacillus subtilis Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Enterobacter aerogens, Escherichia coli, Streptococcus pneumoniae, Aeromonas hydrophila by the agar disc diffusion method.

Results: Synthesized AgNPs  were obtained in 13.01 to 28.14 nm size range, while AuNPs were in  6.32 to 18.19 nm size range. The results of Fourier transform infrared spectroscopy (FTIR) spectra indicates  that the AuNPs are bound to amine groups and the AgNPs to carboxylate ion groups. The antibacterial activities  of AgNPs,  the zone of inhibition significantly increased with the  increases of concentrations of AgNPs in all pathogenic bacterial species  except  in the case of S. epidermidis at 50%, S. aerogenes and A. hydrophila at 70%, while in case of AuNPs antibacterial activity  was displayed  only against B. subtilis at 20% and 100% concentration.

Conclusion: This study suggests that AgNPs exhibits outstanding antibacterial activity against pathogenic bacteria as compared to AuNPs synthesized from Hibiscus Rosa sinensis leaf extract and insights to their potential applicability as an alternative antibacterial  agent in microbial and human health system to reduce the resistance ability of pathogenic bacteria. 


Keywords: silver nanoparticles, gold nanoparticles, UV–VIS spectroscopy, FTIR, TEM, antibacterial activities.

Author Biography

Shruti Tyagi, Woman Scientist-A (WOS-A), Department of Biotechnology, Meerut Institute of Engineering and Technology
Department of Biotechnology, Woman Scientist-A


[1] F. Alanazi, A. Radwan, I. Alsarra, Biopharmaceutical applications of nanogold, Saudi Pharmaceutical Journal. 18 (2010) 179-193.
[2] C. Di Guglielmo, D. López, J. De Lapuente, J. Mallafre, M. Suàrez, Embryotoxicity of cobalt ferrite and gold nanoparticles: A first in vitro approach, Reproductive Toxicology. 30 (2010) 271-276.
[3] K. Haruna, T. Saleh, J. Al Thagfi, A. Al-Saadi, Structural properties, vibrational spectra and surface-enhanced Raman scattering of 2,4,6-trichloro- and tribromoanilines: A comparative study, Journal Of Molecular Structure. 1121 (2016) 7-15.
[4] T. Saleh, Detection: From Electrochemistry to Spectroscopy with Chromatographic Techniques, Recent Trends with Nanotechnology, Detection. 02 (2014) 27-32.
[5] S. Tyagi, Role of phytochemicals on biosynthesis of silver nanoparticles from plant extracts and their concentration dependent toxicity impacts on Drosophila melanogaster. Biological Insights 1(2016) 21-28.
[6] B. Shivananda Nayak, S. Sivachandra Raju, F. Orette, A. Chalapathi Rao, Effects of Hibiscus rosa sinensis L (Malvaceae) on Wound Healing Activity: A Preclinical Study in a Sprague Dawley Rat, The International Journal Of Lower Extremity Wounds. 6 (2007) 76-81.
[7] A. Frattini, N. Pellegri, D. Nicastro, O. Sanctis, Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes, Materials Chemistry And Physics. 94 (2005) 148-152.
[8] P. Li, J. Li, C. Wu, Q. Wu, J. Li, Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles, Nanotechnology. 16 (2005) 1912-1917.
[9] V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein et al., An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement, Biomaterials. 25 (2004) 4383-4391.
[10] B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver, Cheminform. 37 (2006).
[11] A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová et al., Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity, The Journal Of Physical Chemistry B. 110 (2006) 16248-16253.
[12] S. Mann, R. Frankel, R. Blakemore, Structure, morphology and crystal growth of bacterial magnetite, Nature. 310 (1984) 405-407.
[13] T. Beveridge, M. Hughes, H. Lee, K. Leung, R. Poole, I. Savvaidis et al., Metal-microbe interactions: contemporary approaches, Advances In Microbial Physiology. 38 (1997) 177-243.
[14] S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, Journal Of Colloid And Interface Science. 275 (2004) 496-502.
[15] J. Gardea-Torresdey, J. Parsons, E. Gomez, J. Peralta-Videa, H. Troiani, P. Santiago et al., Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants, Nano Letters. 2 (2002) 397-401.
[16] J. Chen, Z. Lin, X. Ma, Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate, Letters In Applied Microbiology. 37 (2003) 105-108.
[17] A. Ahmad, S. Senapati, M. Khan, R. Kumar, M. Sastry, Extra-/Intracellular Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus, Trichothecium sp., Journal Of Biomedical Nanotechnology. 1 (2005) 47-53.
[18] M. JagadeeshM. Seehra, Principal magnetic susceptibilities of MnO and their temperature dependence, Physical Review B. 23 (1981) 1185-1189.
[19] S. Tedesco, H. Doyle, J. Blasco, G. Redmond, D. Sheehan, Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis, Aquatic Toxicology. 100 (2010) 178-186.
[20] K. Mendoza, V. McLane, S. Kim, J. Griffin, Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording, Brain Research. 1325 (2010) 19-27.
[21] D. Hartono, Hody, K. Yang, L. Lanry Yung, The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes, Biomaterials. 31 (2010) 3008-3015.
[22] E. Lukianova-Hleb, D. Wagner, M. Brenner, D. Lapotko, Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles, Biomaterials. 33 (2012) 5441-5450.
[23] A. Mishra, S. Tripathy, S. Yun, Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus, Process Biochemistry. 47 (2012) 701-711.
[24] A. Etame, C. Smith, W. Chan, J. Rutka, Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature, Nanomedicine: Nanotechnology, Biology And Medicine. 7 (2011) 992-1000.
[25] A. Oyelere, Gold nanoparticles: From nanomedicine to nanosensing, Nanotechnology, Science And Applications. Volume 1 (2008) 45-66.
[26] S. Sershen, S. Westcott, N. Halas, J. West, Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, Journal Of Biomedical Materials Research. 51 (2000) 293-298.
[27] D. Pissuwan, S. Valenzuela, M. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles, Trends In Biotechnology. 24 (2006) 62-67.
[28] T. Saleh, Sensing of chlorpheniramine in pharmaceutical applications by sequential injector coupled with potentiometer, Journal Of Pharmaceutical Analysis. 1 (2011) 246-250.
[29] A. Idris, A. Ibrahim, A. Abulkibash, T. Saleh, K. Ibrahim, Rapid inexpensive assay method for verapamil by spectrophotometric sequential injection analysis, Drug Testing And Analysis. 3 (2011) 380-386.
[30] J. Turkevich, G. Garton, P. Stevenson, The color of colloidal gold, Journal Of Colloid Science. 9 (1954) 26-35.
[31] Yu, S. Chang, C. Lee, C. Wang, Gold Nanorods: Electrochemical Synthesis and Optical Properties, The Journal Of Physical Chemistry B. 101 (1997) 6661-6664.
[32]T. Saleh, V.Gupta, Nanomaterial and Polymer Membranes:Synthesis, Characterization, and Applications. First ed. Elsevier,USA,2016.
[33] C. Murphy, T. Sau, A. Gole, C. Orendorff, J. Gao, L. Gou et al., Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications, Cheminform. 36 (2005). 13857–13870
[34] S. Oldenburg, R. Averitt, S. Westcott, N. Halas, Nanoengineering of optical resonances, Chemical Physics Letters. 288 (1998) 243-247.
[35] Y. Sun, B. Mayers, Y. Xia, Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors, Nano Letters. 2 (2002) 481-485.
[36] S. Link, M. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods, The Journal Of Physical Chemistry B. 103 (1999) 8410-8426.
[37] P. Krishnamoorthy,T. Jayalakshmi, Preparation, characterization and synthesis of silver nanoparticles by using phyllanthusniruri for the antimicrobial activity and cytotoxic effects, Journal of Chemical and Pharmaceutical Research 4(1012) 4783-4794.
[38] K. Tyagi, S.Tyagi,C.Verma,A. Rajpal, Estimation of toxic effects of chemically and biologically synthesized silver nanoparticles on human gut microflora containing Bacillus subtilis, Journal Of Toxicology And Environmental Health Sciences. 5 (2013) 172-177.
[39] J. Saini, D. Kashyap, B. Batra, S. Kumar, R. kumar, D. Malik, Green Synthesis of Silver Nanoparticles by Using Neem (Azadirachta Indica) and Amla (Phyllanthus Emblica) Leaf Extract, Indian Journal Of Applied Research. 3 (2011) 209-210.
[40] V. Alt, T. Bechert, P. Steinrucke, M. Wagener, P. Seidel, E. Dingeldein et al., In Vitro Testing of Antimicrobial Activity of Bone Cement, Antimicrobial Agents And Chemotherapy. 48 (2004) 4084-4088.
[41] K. Morley, P. Webb, N. Tokareva, A. Krasnov, V. Popov, J. Zhang et al., Synthesis and characterisation of advanced UHMWPE/silver nanocomposites for biomedical applications, European Polymer Journal. 43 (2007) 307-314.
[42] D. Paul, S. Sinha, Extracellular Synthesis of Silver Nanoparticles Using Pseudomonas Aeruginosa KUPSB12 and Its Antibacterial Activity, Jordan Journal Of Biological Sciences. 7 (2014) 245-250.
[43] I. Ahmad, A. Beg, Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens, Journal Of Ethnopharmacology. 74 (2001) 113-123.
[43] A.Sharma, Antibacterial activity of ethanolic extracts of some arid zone plants, Int J Pharm Tech Res. 3 (2011) 283–286.
[44] S. PrabhuE. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, International Nano Letters. 2 (2012) 32.
[45] A. Jha, K. Prasad, K. Prasad, A. Kulkarni, Plant system: Nature's nanofactory, Colloids And Surfaces B: Biointerfaces. 73 (2009) 219-223.
[48] I.Bunghez, M.Barbinta Patrascu,N. Badea, S. Doncea, A. Popescu , R. Ion, Antioxidant silver nanoparticles green synthesized using ornamental plants, J Optoelectronics Adv Mater 14(2012)1016–1022.
[49] P.Kalainila, V.Subha, R.Ernest Ravindran ,R. Sahadevan, Synthesis and characterization of silver nanoparticles from Erythrina indicia,Asian J Pharm and Clin Res. 7(2014) 39–43.
[50] M. HarmsC. Müller-Goymann, Solid lipid nanoparticles for drug delivery, Journal Of Drug Delivery Science And Technology. 21 (2011) 89-99.
[51] R. Joshi S.A, Solid Lipid Nanoparticle: A Review, IOSR Journal Of Pharmacy (IOSRPHR). 2 (2012) 34-44.
[52] S. Deb, H. Patra, P. Lahiri, A. Dasgupta, K. Chakrabarti, U. Chaudhuri, Multistability in platelets and their response to gold nanoparticles, Nanomedicine: Nanotechnology, Biology And Medicine. 7 (2011) 376-384.
[53] M. Ganeshkumar, T. Sastry, M. Sathish Kumar, M. Dinesh, S. Kannappan, L. Suguna, Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model, Materials Research Bulletin. 47 (2012) 2113-2119.
[54] Q. Guo, Q. Guo, J. Yuan, J. Zeng, Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin, Colloids And Surfaces A: Physicochemical And Engineering Aspects. 441 (2014) 127-132.
[55] M. Lan, Y. Hsu, C. Hsu, C. Ho, J. Lin, S. Lee, Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells, Auris Nasus Larynx. 40 (2013) 563-568.
[56] I. SondiB. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal Of Colloid And Interface Science. 275 (2004) 177-182.
[57] M. Danilczuk, A. Lund, J. Sadlo, H. Yamada, J. Michalik, Conduction electron spin resonance of small silver particles, Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy. 63 (2006) 189-191
[58]J.Kim,E.Kuk,K.Yu,J.Kim,S.Park,H.Lee,S.Kim,Y.Park,Y.Park,C.Hwang,Y.Kim,Y.LeeH.Jeong,M.Cho,Antimicrobal effects of silver nanoparticles. Nanomedicine. 3(2007) 95–101.
[59] Q. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli andStaphylococcus aureus, Journal Of Biomedical Materials Research. 52 (2000) 662-668.
[60] Y. Matsumura, K. Yoshikata, S. Kunisaki, T. Tsuchido, Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate, Applied And Environmental Microbiology. 69 (2003) 4278-4281.
[61] A. Shahverdi, A. Fakhimi, H. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli, Nanomedicine: Nanotechnology, Biology And Medicine. 3 (2007) 168-171.
[62] S. Pal, Y. Tak, J. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli, Applied And Environmental Microbiology. 73 (2007) 1712-1720.
[63] V. Sharma, R. Yngard, Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities, Advances In Colloid And Interface Science. 145 (2009) 83-96.
384 Views | 644 Downloads
How to Cite
Tyagi, S., A. Kumar, and P. K. Tyagi. “COMPARATIVE ANALYSIS OF METAL NANOPARTICLES SYNTHESIZED FROM HIBISCUS ROSA SINESIS AND THEIR ANTIBACTERIAL ACTIVITY ESTIMATION AGAINST NINE PATHOGENIC BACTERIA”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 10, no. 5, May 2017, pp. 323-9, doi:10.22159/ajpcr.2017.v10i5.17458.
Original Article(s)