THE CURRENT SCREENING TECHNOLOGIES OF GENE EXPRESSION PROFILE IN DIABETES MELLITUS


Holifa Saheera Asmara, Mainul Haque

Abstract


Diabetes is commonly observed as a complexity and alteration of metabolic pathways through the oxidative stress and inflammations. It is a chronic condition, which has shown adverse effects and damages mechanisms. A broad study involving latest technologies has been conducted to view the alteration of gene expressions in order to understand the underlying of diabetes complications, a high rank of mortal disease worldwide, which demands a high cost of treatments and medications. Current technology has engaged with the method of gene expression detection, which is available in the laboratory settings, includes microarray system, real-time PCR (RT-PCR) and next gene sequencing (NGS). The output from gene expressions studies contributes to a better understanding of the molecular mechanism, promising a better possible gene target therapy and preventions.


Keywords


Gene Expression, Microarray, Real Time PCR, Next Gene Sequencing, Diabetes

| PDF |

References


Barbieri M. Cognitive decline and diabetes: A focus on linking mechanisms. Part II: General aspect nutritional factors and specific conditions in dementia and cognitive decline. In: Diet and Nutrition in Dementia and Cognitive Decline. Ch. 35. Broomfield, CO, US: Elsevier Inc.; 2015. p. 393-2.

Alwin C. Powers diabetes mellitus. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, editors. Harrison’s Principles of Internal Medicine. 18th ed. New York: McGraw-Hill Medical Publishing Division; 2008. p. 2968-9.

Mushtaq S, Mayee KR, Amreen S, Satyanarayana V, Yerramilli A, Ramakrishnana S. A study on the current prescribing patterns of dipeptidyl peptidase 4 inhibitors in a multi speciality hospital outpatient setting. Asian J Pharm Clin Res 2014;7 Suppl 2:134-6.

Islam MA, Akhtar MA, Khan MR, Hossain MS, Alam AH, Wahed MI, et al. Oral glucose tolerance test (OGTT) in normal control and glucose induced hyperglycemia rats with Coccinia cordifolia L. and Catharanthus roseus L. Pak J Pharm 2009;22(4):402-4.

Toth C. Diabetes and neurodegeneration in the brain. In: Zochodne DW, Malik RA, editors. Handbook of Clinical Neurology. 1st ed. Ch. 32. New York, NY: Elsevier B.V.; 2014. p. 489-11.

Malini P, Kanchana G, Rajadurai M. Antibiabetic efficacy of ellagic acid in streptozotocininduced diabetes mellitus in albino wistar rats. Asian J Pharm Clin Res 2011;4(3):1248.

Stalin C, Dineshkumar P, Nithiyananthan K. Evaluation of antidiabetic activity of methanolic leaf extract of ficus Carica in alloxan-induced diabetic rats. Asian J Pharm Clin Res 2012;5(3):85-7.

Moradi M, Mousavi S. Drug use evaluation of diabetes mellitus in non-hospitalized patients. Int J Pharm Pharm Sci 2016;8:337-41.

Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014;103(2):137-49.

Ibrahim R. Diabetes mellitus Type II: Review of oral treatment options. Int J Pharm Pharm Sci 2010;2:21.

Andayani TM, Ibrahim MI, Asdie AH. The association of diabetes-related factor and quality of life in Type 2 diabetes mellitus. Int J Pharm Pharm Sci 2010;2:139-45.

Huang IC, Liu JH, Wu AW, Wu MY, Leite W, Hwang CC. Evaluating the reliability, validity and minimally important difference of the Taiwanese version of the diabetes quality of life (DQOL) measurement. Health Qual Life Outcomes 2008;6:87.

Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD. Obesity and Type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis. J Cereb Blood Flow Metab 2010;30(8):1527-37.

Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, et al. Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. J Mol Endocrinol 2006;36(3):485-501.

Saumet A, Vetter G, Bouttier M, Portales-Casamar E, Wasserman WW, Maurin T, et al. Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia. Blood J 2017;113(2):412-22.

Aboonabi A, Rahmat A, Othman F. Antioxidant effect of promegranate against streptozotocin-nicotinamide generatedcoxidative stress induced diabetic rats. Toxicol Rep 2014;1:915-22.

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009;32:S62-7.

Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics (Sao Paulo) 2009;64(3):235-44.

Biessels GJ, Gispen WH. The impact of diabetes on cognition: What can be learned from rodent models? Neurobiol Aging 2005;26 Suppl 1:36-41.

Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 2005;353:1768-71.

Kuhad A, Chopra K. Attenuation of diabetic nephropathy by tocotrienol: Involvement of NFkB signaling pathway. Life Sci 2009;84(9-10):296-301.

Lê KA, Faeh D, Stettler R, Debard C, Loizon E, Vidal H, et al. Effects of four-week high-fructose diet on gene expression in skeletal muscle of healthy men. Diabetes Metab 2008;34(1):82-5.

Ajamian F, Titok T, Suhorada E, Ruban T, Reeben M. Hepatic expression of the human insulin gene reduces glucose levels. Prelim Rep 2003;1627:424-9.

Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, Shiran MS, Singh A, Learn-Han L. Differential microRNA expression and identification of putative miRNA targets and pathways in head and neck cancers. Int J Mol Med 2011;28(3):327-36.

Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006;9:435-43.

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Advances in brief reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753-6.

Weber M, Baker MB, Patel RS, Quyyumi AA, Bao G, Searles CD. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol Res Pract 2011;2011:532915.

Wu W, Yang J, Feng X, Wang H, Ye S, Yang, et al. MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration and invasion in colorectal carcinoma cells. Mol Cancer 2013;30:1-11.

Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX, et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 2005;33(2):e17.

Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A 1993;90(5):1814-8.

Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2256-64.

Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and Type 2 diabetes. Science 2004;306(5695):457-61.

van Rooij E. The art of microRNA research. Circ Res 2011;108(2):219-34.

Git A, Dvinge H, Osborne M, Kutter C, Hadfield J, Bertone P, et al. Systematic comparison of microarray profiling, real-time PCR and next-generation sequencing technologies for measuring differential microRNA expression. RNA 2010;16:991-6.

Eaves IA, Wicker LS, Ghandour G, Lyons PA, Peterson LB, Todd JA, et al. Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: The NOD model of Type 1 diabetes. Genome Res 2003;12:232-3.

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1-alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Gen 2003;34:267-73.

Muhammad SA, Raza W, Nguyen T, Bai B, Wu X, Chen J. Cellular signaling pathways in insulin resistance-systems biology analyses of microarray dataset reveals new drug target gene signatures of Type 2 diabetes mellitus. Front Physiol 2017;8(1):1-15.

Spencer M, Finlin BS, Unal R, Zhu B, Morris AJ, Shipp LR, et al. Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes 2013;62(5):1709-17.

Ramsingh G, Koboldt DC, Trissal M, Chiappinelli KB, Wylie T, Koul S, et al. Complete characterization of the microRNAome in a patient with acute myeloid leukemia. Blood 2010;116(24):5316-26.

Statnick MA, Beavers LS, Conner LJ, Corominola H, Johnson D, Hammond CD, et al. Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with Type 2 diabetes. Int J Exp Diabetes Res 1999;1:81-8.

Napoli Z, Seghieri G, Bianchi L, Anichini R, de Bellis A, Campesi I, et al. Taurine transporter gene expression in mononuclear blood cells of Type 1 diabetes patients. J Diabetes Res 2016;2016:1-7.

Wu X, Xu H, Zhang Z, Chang Q, Liao S, Zhang L, et al. Transcriptome profiles using next-generation sequencing reveal liver changes in the early stage of diabetes in tree shrew (Tupaia belangeri chinensis). J Diabetes Res 2016;2016:1-15.

Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet 2010;11:31-6.

Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia 2013;56(9):1958-63.

Bonnefond A, Durand E, Sand O, de Graeve F, Gallina S, Busiah K, et al. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS One 2010;5:e13630.

Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res 1996;6(10):986-94.

Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33(20):e179.

Nadeau KJ, Ehlers LB, Aguirre LE, Moore RL, Jew KN, Ortmeyer HK, et al. Exercise training and calorie restriction increase SREBP-1 expression and intramuscular triglyceride in skeletal muscle. Am J Physiol Endocrinol Metab 2006;291:90-8.

Sadi G, Baloglu MC, Pektas MB. Differential gene expression in liver tissues of streptozotocin-induced diabetic rats in response to resveratrol treatment. PLoS One 2015;10(4):e0124968.

Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 2006;3(1):27-9.

Hagiwara D, Arima H, Morishita Y, Wenjun L, Azuma Y, Ito Y, et al. Arginine vasopressin neuronal loss results from autophagy-associated cell death in a mouse model for familial neurohypophysial diabetes insipidus. Cell Death Dis 2014;5(3):e1148-9.




About this article

Title

THE CURRENT SCREENING TECHNOLOGIES OF GENE EXPRESSION PROFILE IN DIABETES MELLITUS

Topics

Medicine

Keywords

Gene Expression, Microarray, Real Time PCR, Next Gene Sequencing, Diabetes

DOI

10.22159/ajpcr.2017.v10i8.20420

Date

01-08-2017

Additional Links

Manuscript Submission

Journal

Asian Journal of Pharmaceutical and Clinical Research
Vol 10 Issue 8 August 2017 Page: 10-14

Print ISSN

0974-2441

Online ISSN

2455-3891

Statistics

102 Views | 166 Downloads

Authors & Affiliations

Holifa Saheera Asmara
Faculty of Medicine, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
Malaysia

Mainul Haque
Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defense University of Malaysia), Kem Sungai Besi, 57000 Kuala Lumpur Malaysia), Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia.
Malaysia


Article Tools


Email this article (Login required)
Email the author (Login required)

Refbacks

  • There are currently no refbacks.