• Igustingurah Raka Bhaskarawilaputraka Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
  • Azminah Azminah Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
  • Linda Erlina Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
  • Rezi Riadhi Syahdi Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
  • Arry Yanuar Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.


Objective: DNA hypermethylation is an abnormal epigenetic process catalyzed by DNA methyltransferase 1 (DNMT1). It is also one of the factors that cause non-communicable diseases such as cancer, diabetes, and other metabolic diseases. DNA hypermethylation can be reversed by suppressing DNMT1 activity using a DNMT inhibitor. This study was conducted to seek out inhibitor candidates among natural products.

Methods: The search for potential inhibitors was conducted through a virtual screening of the Indonesian Herbal Database using AutoDockVina as docking software. Twenty-five compounds known for their inhibitory activity against DNMT1 were used as actives and as a reference for generating decoys, which was done using the Directory of Useful Decoys, Enhanced.

Results: The 12 compounds with binding energies below the cutoff value were cassiamin C (A1), procyanidin B2 (B2), ent-epicatechin- (4alpha->8)-ent-epicatechin (C3), epicatechin-(4beta->8)-epicatechin-3-O-gallate (D4), neorhusflavanone (E5), 3-O-galloylepicatechin- (4beta->6)-epicatechin-3-O-gallate (F6), withanolide (G7), 3-O-galloylepigallocatechin-(4beta->6)-epigallocatechin-3-O-gallate (H8), cyanidin 3-(6’’-caffeylsophoroside)-5-glucoside (I9), epifriedelanol (J10), gallocatechin-(4alpha->8)-epicatechin (K11), and scutellarein 7-glucosyl-(1->4)- rhamnoside (L12). A1 had the lowest binding energy of −12.7 kcal/mol, whereas K11 had the highest of −11.5 kcal/mol.

Conclusions: The virtual screening yielded five potential DNMT1 inhibitors: Procyanidin B2, ent-epicatechin-(4alpha->8)-ent-epicatechin, epicatechin-(4beta->8)-epicatechin-3-O-gallate, neorhusflavanone, and cyanidin 3-(6’’-caffeylsophoroside)-5-glucoside.  

Keywords: Epigenetic, DNA methyltransferase inhibitor, Indonesian Herbal Database, Virtual screening, AutoDockVina.


1. Balbus JM, Barouki R, Birnbaum LS, Etzel RA, Gluckman PD Sr, Grandjean P, et al. Early-life prevention of non-communicable diseases. Lancet 2013;381(9860):3-4.
2. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013;38(1):23-38.
3. Dhe-Paganon S, Syeda F, Park L. DNA methyl transferase 1: Regulatory mechanisms and implications in health and disease. Int J Biochem Mol Biol 2011;2(1):58-66.
4. Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, et al. Epigenetic regulation of PPARGC1A in human Type 2 diabetic islets and effect on insulin secretion. Diabetologia 2008;51(4):615-22.
5. Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract 2014;105(2):164-75.
6. Mikeska T, Craig JM. DNA methylation biomarkers: Cancer and beyond. Genes (Basel) 2014;5(3):821-64.
7. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 2005;97(20):1498-506.
8. Komashko VM, Farnham PJ. 5-azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics 2010;5(3):229-40.
9. Poirier S, Samami S, Mamarbachi M, Demers A, Chang TY, Vance DE, et al. The epigenetic drug 5-azacytidine interferes with cholesterol and lipid metabolism. J Biol Chem 2014;289(27):18736-51.
10. Medina-Franco JL. Advances in computational approaches for drug discovery based on natural products. Rev Latinoam Quim 2013;41(2):95-110.
11. Maldonado-Rojas W, Olivero-Verbel J, Marrero-Ponce Y. Computational fishing of new DNA methyltransferase inhibitors from natural products. J Mol Graph Model 2015;60:43-54.
12. Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 2009;19(3):706-9.
13. Fang MZ, Wang Y, Ai N. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003;63(2):7563-70.
14. Xie Q, Bai Q, Zou LY, Zhang QY, Zhou Y, Chang H, et al. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer 2014;53(5):422-31.
15. Lee WJ, Zhu BT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 2006;27(2):269-77.
16. García J, Franci G, Pereira R, Benedetti R, Nebbioso A, Rodríguez-Barrios F, et al. Epigenetic profiling of the antitumor natural product psammaplin A and its analogues. Bioorg Med Chem 2011;19(12):3637-49.
17. Agarwal S, Amin KS, Jagadeesh S, Baishay G, Rao PG, Barua NC, et al. Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol Cancer 2013;12(1):99.
18. Caniago I, Stephen FS. Medicinal plant ecology, knowledge and conservation in Kalimantan, Indonesia. Econ Bot 1998;52(3):229-50.
19. Slik JW, Raes N, Aiba S, Brearley FQ, Cannon CH, Meijaard E, et al. Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers Distrib 2009;15(3):523-32.
20. Yanuar A, Mun’im A, Lagho AB, Syahdi RR, Rahmat M, Suhartanto H. Medicinal plants database and three dimensional structure of the chemical compounds from medicinal plants in Indonesia. Int J Comput Sci Issu 2011;8(5):180-3.
21. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 1998;19:1639-62.
22. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31(2):455-61.
23. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015;1263:243-50.
24. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of Useful Decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J Med Chem 2012;55(14):6582-94.
25. Yanuar A, Suhartanto H, Munim A, Anugraha BH, Syahdi RR. Virtual screening of indonesian herbal database as HIV-1 protease inhibitor. Bioinformation 2014;10(2):52-5.
26. Syahdi RR, Mun’im A, Suhartanto H, Yanuar A. Virtual screening of Indonesian herbal database as HIV-1 reverse transcriptase inhibitor. Bioinformation 2012;8(24):1206-10.
27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res 2000;28(1):235-42.
28. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-prot, the manually annotated section of the UniProt knowledge base: How to use the entry view. Methods Mol Biol 2016;1374:23-54.
29. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, et al. The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Res 2015;43:D213-21.
30. Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, et al. The protein model portal-a comprehensive resource for protein structure and model information. Database (Oxford) 2013;2013:bat031.
31. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 1980;36(22):3219-28.
32. Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 1996;17:490-519.
33. Weininger DS. A chemical language and information system. Introduction to methodology and encoding rules. J Chem Inf Model 1998;28(1):31-6.
34. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminform 2011;3:33.
35. Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011;51(10):2778-86.
346 Views | 197 Downloads
How to Cite
Bhaskarawilaputraka, I. R., A. Azminah, L. Erlina, R. R. Syahdi, and A. Yanuar. “VIRTUAL SCREENING OF INDONESIAN HERBAL DATABASE FOR DNA METHYLTRANSFERASE INHIBITORS”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 10, no. 17, Oct. 2017, pp. 153-7, doi:10.22159/ajpcr.2017.v10s5.23120.
Original Article(s)

Most read articles by the same author(s)