• MOUSAMI S SAMANTA Department of Pharmaceutics, H.K. College of Pharmacy, Oshiwara, Mumbai, Maharashtra, India.
  • DEEPAK GAUTAM Department of Pharmaceutics, H.K. College of Pharmacy, Oshiwara, Mumbai, Maharashtra, India.
  • MUHAMMED WASIM CHANDEL Department of Pharmaceutics, H.K. College of Pharmacy, Oshiwara, Mumbai, Maharashtra, India.
  • GAURANG SAWANT Department of Pharmaceutics, H.K. College of Pharmacy, Oshiwara, Mumbai, Maharashtra, India. https://orcid.org/0000-0001-8984-2148
  • KIRTI SHARMA Department of Pharmaceutics, H.K. College of Pharmacy, Oshiwara, Mumbai, Maharashtra, India.


Over the past three decades, controlled drug delivery systems have become more developed and play a key role in pharmaceuticals formulations. There are many shortcomings in Traditional or Conventional drug delivery systems like for maintaining desired therapeutic drug plasma concentration there is a need for frequent dosing for particular drugs having shorter half-lives. Furthermore, because of frequent dosing requirement, there is poor patient compliance which causes fluctuation in plasma concentration of the drug. The limitations of conventional drug delivery can be overcome by the development of novel drug delivery systems, of which the controlled drug delivery can maintain constant drug plasma concentration by slowly releasing the drug over an extended period. Developing controlled drug delivery systems can also improve the systemic bioavailability of the drug, thus enhancing the therapeutic efficacy of the drug and better patient compliance. There are many different approaches for such controlled delivery systems such as liposomes, niosomes, ethosomes, phytosomes, microemulsion, and microspheres. Among all the approaches microspheres are more convenient as the drug is slowly released from the polymeric matrix and the polymers used are mostly biodegradable and possess no side effects. Therefore, microspheres can be used in various medicinal departments such as oncology, gynecology, radiology, pulmonary, cardiology, diabetes, and vaccine therapy. This review article focuses on recent different types of microspheres along with their methods of preparation. The microspheres formulated can be later evaluated and characterized by different procedures.

Keywords: Controlled drug delivery system, Improved systemic bioavailability, The constant drug plasma level


1. Kakar S, Jain A. Magnetic microspheres: An Overview. Asian Pac J Health Sci 2019;6:81-9.
2. Sharma M, Dev SK, Kumar M, Shukla AK. Microspheres as a suitable drug carrier in sustained release drug delivery: An overview. Asian J Pharm Pharmacol 2018;4:102-8.
3. Nidhi P, Anamika C, Twinkle S, Mehul S, Hitesh J, Umesh U. Controlled drug delivery system: A review. Indo Am J Pharm Sci 2016;3:227-33.
4. Prasad BS, Gupta VR, Devanna N, Jayasurya K. Microspheres as drug delivery system-a review. J Glob Trends Pharm Sci 2014;5:1961-72.
5. Virmani T, Gupta J. Pharmaceutical application of microspheres: An approach for the treatment of various diseases. Int J Pharm Sci Res 2017;8:3252-60.
6. Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm 2019;87:20.
7. Farraj NF, Johansen BR, Davis SS, Illum L. Nasal administration of insulin using bioadhesive microspheres as a delivery system. J Control Release 1990;13:253-61.
8. Genta I, Conti B, Perugini P, Pavanetto F, Spadaro A, Puglisi G. Bioadhesive microspheres for ophthalmic administration of acyclovir. J Pharm Pharmacol 1997;49:737-42.
9. Chandna A, Batra D, Kakar S, Singh R. A review on target drug delivery: Magnetic microspheres. J Acute Dis 2013;2:189-95.
10. Zhang J, Zhang S, Wang Y, Zeng J. Composite magnetic microspheres: Preparation and characterization. J Magn Magn Mater 2007;309:197-201.
11. Sangale SB, Barhate SD, Jain BV, Potdar M. Formulation and evaluation of floating felodipine microsphere. Int J Pharm Res Dev 2011;3:163-70.
12. Srivastava AK, Ridhurkar DN, Wadhwa S. Floating microspheres of cimetidine: Formulation, characterization and in vitro evaluation. Acta Pharm 2005;55:277-85.
13. De Cuyper M, Bulte JW, editors. Urs HÄfeli. In: Radioactive Microspheres for Medical Applications. Physics and Chemistry Basis of Biotechnology. Vol. 7. Springer: Dordrecht; 2001. p. 213-48.
14. El-Helw AM, Al-Hazimi AM, Youssef RM. Preparation of sustained release phenobarbitone microspheres using natural and synthetic polymers. Med Sci 2008;15:39-51.
15. Cai Y, Chen Y, Hong X, Liu Z, Yuan W. Porous microsphere and its applications. Int J Nanomed 2013;8:1111.
16. Zhang CZ, Niu J, Chong YS, Huang YF, Chu Y, Xie SY, et al. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro and in vivo. Eur J Pharm Biopharm 2016;109:1-3.
17. Budov VV. Hollow glass microspheres. Use, properties, and technology. Glass Ceram 1994;51:230-5.
18. Li S, Nguyen L, Xiong H, Wang M, Hu TC, She JX, et al. Porous-wall hollow glass microspheres as novel potential nanocarriers for biomedical applications. Nanomed Nanotechnol 2010;6:127-36.
19. Ratnaparkhi M, Wattamwar M, Jadhav A, Chaudhari S. Mucoadhesive microsphere-review. Int J Drug Dev Res 2014;6:975-1344.
20. Degim IT, Çelebi N. Controlled delivery of peptides and proteins. Curr Pharm Des 2007;13:99-117.
21. Bansal H, Kaur S, Gupta A. Microsphere: Methods of prepration and applications; a comparative study. Int J Pharm Sci Rev Res 2011;10:69-78.
22. Wu L, Wang M, Singh V, Li H, Guo Z, Gui S, et al. Three-dimensional distribution of surfactant in microspheres revealed by synchrotron radiation X-ray microcomputed tomography. Asian J Pharm Sci 2017;12:326-34.
23. Avachat A, Bornare P, Dash R. Sustained release microspheres of ropinirole hydrochloride: Effect of process parameters. Acta Pharm 2011;61:363-76.
24. Ranjha NM, Khan H, Naseem S. Encapsulation and characterization of controlled release flurbiprofen loaded microspheres using beeswax as an encapsulating agent. J Mater Sci Mater Med 2010;21:1621-30.
25. Pachuau L, Mazumder B. A study on the effects of different surfactants on ethyl cellulose microspheres. Int J Pharm Tech Res 2009;1:966-71.
26. Kim JC, Song ME, Lee EJ, Park SK, Rang MJ, Ahn HJ. Preparation of microspheres by an emulsification-complexation method. J Colloid Interface Sci 2002;248:1-4.
27. De Rosa G, Iommelli R, La Rotonda MI, Miro A, Quaglia F. Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres. J Control Release 2000;69:283-95.
28. Gaur PK, Mishra S, Bajpai M. Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study. J Food Drug Anal 2014;22:542-8.
29. Dinarvand R, Moghadam SH, Sheikhi A, Atyabi F. Effect of surfactant HLB and different formulation variables on the properties of poly-D, L-lactide microspheres of naltrexone prepared by double emulsion technique. J Microencapsul 2005;22:139-51.
30. Shiga K, Muramatsu N, Kondo T. Preparation of poly (D, L?lactide) and copoly (lactide?glycolide) microspheres of uniform size. J Pharm Pharmacol 1996;48:891-5.
31. Wan LS, Heng PW, Chan LW. Surfactant effects on alginate microspheres. Int J Pharm 1994;103:267-75.
32. Khare P, Jain SK. Influence of rheology of dispersion media in the preparation of polymeric microspheres through emulsification method. AAPS Pharm Sci Tech 2009;10:1295-300.
33. Kumbar SG, Kulkarni AR, Aminabhavi TM. Crosslinked chitosan microspheres for encapsulation of diclofenac sodium: Effect of crosslinking agent. J Microencapsul 2002;19:173-80.
34. Gülsu A, Ayhan H, Ayhan F. Preparation and characterization of ketoprofen loaded albumin microspheres. Turk J Biochem 2012;37:120-8.
35. Jayan SC, Sandeep AV, Rifash M, Mareema CM, Shamseera S. Design and in vitro evaluation of gelatin microspheres of salbutamol sulphate. Hygeia 2009;1:17-20.
36. Wei W, Wang LY, Yuan L, Wei Q, Yang XD, Su ZG, Ma GH. Preparation and application of novel microspheres possessing autofluorescent properties. Adv Func Mater 2007; 17:3153-8.
37. Behera AL, Patil SV, Sahoo SK. Formulation and characteristics of 5 fluorouracil microspheres by solvent evaporation method. Int J Pharm Pharm Sci 2011;3:32-5.
38. Kendre P, Chaudhari P. Formulation and evaluation of telmisartan microspheres by solvent evaporation technique. Indo Am J Pharm Res 2012;2:651-7.
39. Uyen NT, Hamid ZA, Tram NX, Ahmad N. Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol 2020;153:1035-46.
40. Uyen NT, Hamid ZA, Ahmad NB. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J Drug Deliv Sci Technol 2020;58:101796.
41. Mua L, Fenga SS. Fabrication, characterization and in vitro release of paclitaxel (TaxolÒ) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J Control Release 2001;76:239-54.
42. Zalloum NL, de Souza GA, Martins TD. Single-emulsion P (HB-HV) microsphere preparation tuned by copolymer molar mass and additive interaction. ACS Omega 2019;4:8122-35.
43. Yanga YY, Chiab HH, Chunga TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/ evaporation method. J Control Release 2000;69:81-96.
44. Bhattacharya S, Alam M, Dhungana K, Yadav S, Chaudhary KR, Chaturvedi KK, et al. Preparation and evaluation of diclofenac gelatin microspheres using coacervation technique. Int J Pharm Res Innov 2020;13:14-21.
45. Bertoni S, Albertini B, Passerini N. Different BCS Class II drug-gelucire solid dispersions prepared by spray congealing: Evaluation of solid state properties and in vitro performances. Pharmaceutics 2020;12:548.
46. Gurung BD, Kakar S. An overview on microspheres. Int J Health Clin Res 2020;3:11-24.
47. Baimark Y, Srisuwan Y. Preparation of polysaccharide-based microspheres by a water-in-oil emulsion solvent diffusion method for drug carriers. Int J Polym Sci 2013;2013:1-6.
48. Kim JU, Shahbaz HM, Lee H, Kim T, Yang K, Roh YH, et al. Optimization of phytic acid-crosslinked chitosan microspheres for oral insulin delivery using response surface methodology. Int J Pharm 2020;588:119736.
49. Mathiowitz E, Langer R. Polyanhydride microspheres as drug carriers I. Hot-melt microencapsulation. J Control Release 1987;5:13-22.
50. Khanam N, Alam MI, Sachan AK, Gangwar SS. Fabrication and evaluation of propranolol hydrochloride loaded microspheres by ionic-gelation technique. Pharm Lett 2012;4:815-20.
51. Patel N, Lalwani D, Gollmer S, Injeti E, Sari Y, Nesamony J. Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog Biomater 2016;5:117-33.
52. Fujii S, Okada M, Sawa H, Furuzono T, Nakamura Y. Hydroxyapatite nanoparticles as particulate emulsifier: Fabrication of hydroxyapatite-coated biodegradable microspheres. Langmuir 2009;25:9759-66.
53. Trivedi P, Verma AM, Garud N. Preparation and characterization of aceclofenac microspheres. Asian J Pharm 2014;2:110-5.
54. Pradeesh TS, Sunny MC, Varma HK, Ramesh P. Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions. Bull Mater Sci 2005;28:383-90.
55. Naveen HP, Nesalin JA, Mani TT. A modern review on microsphere as novel controlled drug delivery system. Asian J Res Pharm Sci Biotechnol 2014;2:62-9.
56. Thiel MA, Morlet N, Schulz D, Edelhauser HF, Dart JK, Coster DJ, et al. A simple corneal perfusion chamber for drug penetration and toxicity studies. Br J Ophthalmol 2001;85:450-3.
57. Rastogi V, Shukla SS, Singh R, Lal N, Yadav P. Microspheres: A promising drug carrier. J Drug Deliv Ther 2016;6:18-26.
58. Remuñán-López C, Portero A, Vila-Jato JL, Alonso MJ. Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. J Control Release 1998;55:143-52.
59. Masaeli R, Kashi TS, Dinarv R, Tahriri M, Rakhshan V, Esfandyari- Manesh M. Preparation, characterization and evaluation of drug release properties of simvastatin-loaded PLGA microspheres. Iran J Pharm Res 2016;15:205-11.
60. Tejash P, Shah CN, Shah DP. Microspheres: As a novel controlled drug delivery system a review. Pharm Sci Monit 2016;7:37-53.
61. Rathbone MJ. Human buccal absorption. I. A method for estimating the transfer kinetics of drugs across the human buccal membrane. Int J Pharm 1991;69:103-8.
62. Jiang WZ, Cai Y, Li HY. Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery. Powder Technol 2017;312:124-32.
63. Liu W, Lee BS, Mieler WF, Kang-Mieler JJ. Biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of bioactive aflibercept in vitro. Curr Eye Res 2019;44:264-74.
64. Sahu Y, Jain S, Shukla K. Mucoadhesive microspheres based formulation development of ziprasidone hydrochloride for nasal delivery. J Drug Deliv Ther 2020;10:175-81.
65. Xu Q, Leong J, Chua QY, Chi YT, Chow PK, Pack DW, et al. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma. Biomaterials 2013;34:5149-62.
66. Lee S, McAuliffe DJ, Kollias N, Flotte TJ, Doukas AG. Photomechanical delivery of 100?nm microspheres through the stratum corneum: Implications for transdermal drug delivery. Lasers Surg Med 2002;31:207-10.
67. Goswami N, Joshi G, Sawant K. Floating microspheres of valacyclovir HCl: Formulation, optimization, characterization, in vitro and in vivo floatability studies. J Pharm Bioallied Sci 2012;4 Supp 1:S8-9.
68. Almond BA, Hadba AR, Freeman ST, Cuevas BJ, Yorka AM, Detrisacb CJ, et al. Efficacy of mitoxantrone-loaded albumin microspheres for intratumoral chemotherapy of breast cancer. J Control Release 2003;91:147-55.
69. Wang QS, Wang GF, Zhou J, Gao LN, Cui YL. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm 2016;515:176-85.
70. Yang TT, Cheng YZ, Qin M, Wang YH, Yu HL, Wang AL, et al. Thermosensitive chitosan hydrogels containing polymeric microspheres for vaginal drug delivery. Biomed Res Int 2017;2017:3564060.
71. Didi A, Dadouch A, El Bekkouri H. Feasibility study for production of iodine-131 using dioxide of tellurium-130. Int J Pharm Pharm Sci 2016;8:e331.
72. Taïeb D, Guille DA, Mundler LO. Guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. J Med Nucl 2008;32:101-10.
73. Vitaux F. Thyroid gland irradiations and thyroid cancers critical bibliographic journal. J Med Nucl 2007;31:350-5.
74. El Bez I. Cancer de la thyroïde et ablation par iode 131 sous thyrogen: Quand doser la thyroglobuline? Ann Endocrinol 2013;74:156.
75. Spagnoli V, Azzalini L, Tadros VX, Picard F, Ly HQ. Contrast-induced nephropathy: An update. Ann Cardiol Angeiol 2016;65:87-94.
76. Guerrouj H, Elamrani M, Ghfir I, Rais NB. Apport de l’iode 131 dans le traitement de l’adénome thyroïdien toxique. J Med Nucl 2012;36:561-4.
77. Delmaire C. Imagerie des métastases cérébrales. Cancer Radiothér 2015;19:16-9.
78. Shah B. Composites from agricultural detritus for pollution remedy. Int J Pharm Pharm Sci 2016;3:4-49.
79. Boisserie G, Hasboun D. Utilisation de l’imagerie multimodalité en radiothérapie. Cancer Radiothé 2001;5:15-35.
80. Belkacémi Y, Tsoutsou PG, Comet B, Kerrou K, Lartigau E. Évaluation de la radiosensibilité tumorale par l’imagerie fonctionnelle et métabolique: De la recherche à l’application clinique. Revue de la littérature. Cancer Radiothér 2006;10:124-33.
81. Mbodj M, Guerrouj H, Amjad I, Rais NA. Contribution of radio-iodine 131 in the treatment of Grave’s Basedow disease in the department of nuclear medicine of Ibn sina hospital in Rabat. J Med Nucl 2009;33:592-8.
82. Schlienger JL, Goichot B, Grunenberge F. Iode et fonction thyroïdienne. Rev Méd Int 1997;9:709-16.
83. Hamed MA, Ghany AF, Osman NM. The diagnostic usefulness of FDG-PET/CT in detecting tumor recurrence not evident in whole body I-131 scan in differentiated thyroid carcinoma. Egypt J Radiol Nucl Med 2014;45:361-5.
84. Eyles JE, Spiers ID, Williamson ED, Alpar HO, Williamson ED. Tissue distribution of radioactivity following intranasal administration of radioactive microspheres. J Pharm Pharmacol 2001;53:601-7.
85. Nafea EH, El-Massik MA, El-Khordagui LK, Marei MK, Khalafallah NM. Alendronate PLGA microspheres with high loading efficiency for dental applications. J Microencapsul 2007;24:525-38.
86. Kanafi MM, Ramesh A, Gupta PK, Bhonde RR. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int Endod J 2014;47:687-97.
87. Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep 2017;111:1-26.
88. Keskar M, Sabatini C, Cheng C, Swihart MT. Synthesis and characterization of silver nanoparticle-loaded amorphous calcium phosphate microspheres for dental applications. Nano Adv 2019;1:627-35.
89. Zhao XH, Tay FR, Fang YJ, Meng LY, Bian Z. Topical application of phenytoin or nifedipine-loaded PLGA microspheres promotes periodontal regeneration in vivo. Arch Oral Biol 2019;97:42-51.
90. Park JH, Kim MK, Fiqi AE, Seo SJ, Lee EJ, Kim JH, et al. Bioactive and porous-structured nanocomposite microspheres effective for cell delivery: A feasibility study for bone tissue engineering. RSC Adv 2014;4:29062-71.
69 Views | 28 Downloads
How to Cite
S SAMANTA, M., D. GAUTAM, M. W. CHANDEL, G. SAWANT, and K. SHARMA. “A REVIEW ON MICROSPHERES AS A NOVEL CONTROLLED DRUG DELIVERY SYSTEM”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 14, no. 4, Apr. 2021, pp. 3-11, doi:10.22159/ajpcr.2021.v14i4.40634.
Review Article(s)