DESIGN EXPERT SOFTWARE (DOE): AN APLICATION TOOL FOR OPTIMIZATION IN PHARMACEUTICAL PREPARATIONS FORMULATION

Authors

  • IYAN SOPYAN Department of Pharmaceutics and Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia, 45632 https://orcid.org/0000-0001-7616-5176
  • DOLIH GOZALI Department of Pharmaceutics and Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia, 45632 https://orcid.org/0000-0001-7616-5176
  • SRIWIDODO Department of Pharmaceutics and Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia, 45632
  • RIZKA KHOIRUNNISA GUNTINA Department of Pharmaceutics and Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia, 45632

DOI:

https://doi.org/10.22159/ijap.2022v14i4.45144

Keywords:

Formulation, optimization, software, Design Expert

Abstract

Formulation is a crucial stage in drug development since it determines the best formula. The quality of the preparation is good and fulfills the standard parameters when using the best formula. This stage is completed through laboratory experiments that take a long time to complete. To address this, software utilizing computer technology, such as software Design Expert, can be used. The goal of this investigation is to see how Design Expert is used in research formulation and optimization. The method of writing a review was carried out by searching Google Scholar and Science Direct with the keywords "Formulation" and "Design Expert," yielding 63 articles, which were then screened using inclusion criteria, notably field of research on formulation optimization accepted for publication between 2011 and April 2020, and exclusion in the form of review articles. The review's findings suggest that the platform is widely utilized and effective at reducing the number of trials, time, and costs associated with formulation development.

Downloads

Download data is not yet available.

References

Singh BS, Kapil R, and Ahuja N. Systematic optimisation of drug delivery systems: an insight. Pharm Rev. 2008:146–186.

R. A. Ramadhani, D. H. S. Riyadi, B. Triwibowo, and R. D. Kusumaningtyas, Review Pemanfaatan Design Expert untuk Optimasi Komposisi Campuran Minyak Nabati sebagai Bahan Baku Sintesis Biodiesel. J. Tek. Kim. Ling., vol. 1, no. 1, Art. no. 1, Oct. 2017, doi: 10.33795/jtkl.v1i1.5.

Bolton S and Bon C. Pharmaceutical statistics: practical and clinical applications, 4th ed., rev.expanded. ed, Drugs and the pharmaceutical sciences. 2004. 4th ed. New York: M. Dekker.

Montgomery DC. Design and analysis of experiments. 2017. 9th ed. Wiley.

Purwanti EP and Ferihan P. Optimasi parameter proses pemotonhgan stainless stell sus 304 untuk kekasaran permukaan dengan metode respon surface. Prosiding seminar nasional matematika dan pendidikan matematika. Penguatan peran matematika dan pendidikan matematika untuk Indonesia yang lebih Baik. 2013, Accessed: May 19, 2021. [Online]. Available: http://uny.ac.id

Perincek O and Colak M. Use of experimental Box-Behnken design for the estimation of interactions between harmonic currents produced by single phase loads. International Jou. Eng. Res. and App. 2012;3:58–165.

Sopyan I, Wahyuningrum R, and I. S. K. S. An experimental design in the optimazation of various tablet excipients formulations = a concize review. Int. J. of Appl. Pharm. 2022;14(1):28–32. doi: 10.22159/ijap.2022v14i1.43380.

Bose A, Wong TW, and Singh N. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics. Saudi Pharmaceutical Journal. 2013;21(2) :201–213. doi: 10.1016/j.jsps.2012.03.006.

Rabia B et al. Formulation design and optimization of aceclofenac tablets (100 mg) using central composite design with response surface methodology. Latin american journal of pharm. 2014;33:1009–1018.

Reddy YD, Chetty CM, Kumar KR, and Dachinamoorthi D. Formulation and optimization of extended release matrix tablets of losartan potassium using response surface methodology (RSM). Jou. Pharm. Res. Int. 2017; 19(5):1–12.

Naveen NR. Gopinath C, and Rao DS. Design expert supported mathematical optimization of repaglinide gastroretentive floating tablets: In vitro and in vivo evaluation. Future Journal of Pharm. Sci. 2017;3(2);140–147. doi: 10.1016/j.fjps.2017.05.003.

Na Y-G, Jeon S-H, Byeon J-J, Kim MK, Lee HK, and. Cho CW. Application of statistical design on the early development of sustained-release tablet containing ivy leaf extract. Journal of Drug Delivery Science and Technology. 2019;54: 101319. doi: 10.1016/j.jddst.2019.101319.

Khadabadi DSS, Chishti N, Khan FM, and Tadvee AA. Formaulation and evaluation of press coated tablet of ketopropen– a cronotheurapeutics approach. | semanticScholar. 2013. Availabale from https://www.semanticscholar.org/paper/FORMULATION-ANDEVALUATION-OF-PRESS-COATED-TABLET-%E2%80%93 Khadabadi-Chishti/e00ff15ccc64ec941af10bb85c91578da7a87e1b.

Usman S, Ejaz RR, and Safdar KA. Formulation development and optimization of orally disintegrating tablets of montelukast sodium by Design- Expert. Tropical Journal of Pharmaceutical Research. 2018;17(9). doi: 10.4314/tjpr.v17i9.3.

Choudhury P, Deb P, and Dash S. Formulation and staitistical optimazation of bilayer sublingual tablet of levocetrizine hydrocloride aand ambroxol hydrocloride. Asian Journal of Pharma. Clin. Res. 2016:228–234. doi: 10.22159/ajpcr.2016.v9i5.13343.

Sarkhejiya NA, Khachar KK, and Patel PP. Formulation development and evaluation of sublingual tablet of risperidone. Res. J. Phar. Tech. 2013;6(4):428–434.

Khunt D, Mishra A, and Shah D. Formulation design & development of piroxicam emulgel, International Journal of PharmTech Research. 2012;4:1332–1344.

Akhlaq M et al. Formulation and evaluation of anti-rheumatic dexibuprofen transdermal patches: a quality-by-design approach. Journal of drug targeting. 2016;24(7):603–612. doi: 10.3109/1061186X.2015.1116538.

Taghizadeh SM, Moghimi-Ardakani A, and Mohamadnia F. A statistical experimental design approach to evaluate the influence of various penetration enhancers on transdermal drug delivery of buprenorphine. Journal of Advanced Res. 2015;2:155–162. doi: 10.1016/j.jare.2014.01.006.

Ahmed OAA and Badr-Eldin SM. Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation. Int. J. Pharm. 2019;570:118657. doi: 10.1016/j.ijpharm.2019.118657.

Malakar J, Sen SO, Nayak AK, and Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharmaceutical Journal. 2012;20(4):355–363. doi: 10.1016/j.jsps.2012.02.001.

Chauhan MK and Sharma PK. Optimization and characterization of rivastigmine nanolipid carrier loaded transdermal patches for the treatment of dementia. Chemistry and Physics of Lipids 2019;224:04794. doi: 10.1016/j.chemphyslip.2019.104794.

Ma H, Guo D, Fan Y, Wang J, Cheng J, and Zhang X. Paeonol-loaded ethosomes as transdermal delivery carriers: design, preparation and evaluation. Molecules. 2018;23(7). doi: 10.3390/molecules23071756.

Nanda S, Saroha K, and Sharma B. Formulation, evaluation and optimization of transdermal gel of ketorolac tromethamine using face centered central composite design. International Journal of Pharmacy and Pharmaceutical Sciences. 2014;6:133–139.

Mohd. Kamran, Ahad A, Mohd. Aqil, Imam SS, Sultana Y, and Ali A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. International Journal of Pharmaceutics. 2016;505, (1):147–158. doi: 10.1016/j.ijpharm.2016.03.030.

Widyastuti L and Suwidjiyo Pramono. Formulasi granul kombinasi ekstrak terpurifikasi herba Pegagan (Centella asiatica (L.) Urban) dan Herba sambiloto (Andrographis paniculata (Burm.f.) Nees). Thesis, [Yogyakarta]: Universitas Gadjah Mada. 2013. Available from: http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=66270

Hosny KM, Rizg WY, and Khallaf RA. Preparation and Optimization of In Situ Gel Loaded with Rosuvastatin-Ellagic Acid Nanotransfersomes to Enhance the Anti-Proliferative Activity. Pharmaceutics. 2020;12(3). doi: 10.3390/pharmaceutics12030263.

Elmotasem H and Awad GEA. A stepwise optimization strategy to formulate in situ gelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and Eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery. Asian Journal of Pharmaceutical Sciences.2020;5(5):617–636. doi: 10.1016/j.ajps.2019.09.003.

Patel S, Koradia H, and Parikh R. Design and development of intranasal in situ gelling system of Midazolam hydrochloride using 32 full factorial design. Journal of Drug Delivery Science and Technology. 2015;30:154–162. doi: 10.1016/j.jddst.2015.10.010.

Alharbi WS and Hosny KM. Development and optimization of ocular in situ gels loaded with ciprofloxacin cubic liquid crystalline nanoparticles. Journal of Drug Delivery Science and Technology. 2020;57:101710. doi: 10.1016/j.jddst.2020.101710.

Wadetwar RN, Agrawal AR, and Kanojiya PS. In situ gel containing Bimatoprost solid lipid nanoparticles for ocular delivery: In-vitro and ex-vivo evaluation. Journal of Drug Delivery Science and Technology. 2020;56:10175. doi: 10.1016/j.jddst.2020.101575.

Shah V et al. Quality by Design approach for an in situ gelling microemulsion of lorazepam via intranasal route. Materials Science and Engineering: C, 2017;75:1231–1241. doi: 10.1016/j.msec.2017.03.002.

Das T, Venkatesh MP, Pramod Kumar TM, and Koland M. SLN based alendronate in situ gel as an implantable drug delivery system – A full factorial design approach. Journal of Drug Delivery Science and Technology. 2020;55: 101415. doi: 10.1016/j.jddst.2019.101415.

Rao M, Agrawal DK, and Shirsath C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Development and Industrial Pharmacy, 2017;43(1):142–150. doi: 10.1080/03639045.2016.1225754.

Galgatte UC, Kumbhar AB, and Chaudhari PD. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug Delivery. 2014;21(1):62–73. doi: 10.3109/10717544.2013.849778.

Shastri DH, Prajapati ST, and Patel LD. Thermoreversible mucoadhesive ophthalmic in situ hydrogel: Design and optimization using a combination of polymers. Acta Pharm. 2010;60(3):349–360. doi: 10.2478/v10007-010-0029-4.

Sainah. Optimasi formula suspensi siprofloksasin dengan kombinasi pulvois gummi arabicum (PGA) dan karbopol 934 manggunakan metode desain faktorial. Jurnal Mahasiswa Farmasi Fakultas Kedokteran UNTAN. 2021. Available from: https://jurnal.untan.ac.id/index.php/jmfarmasi/article/view/3805

Shivakumar HN, Desai BG, Subhash PG, Ashok P, and Hulakoti B. Design of ocular inserts of brimonidine tartrate by response surface methodology. Journal of Drug Delivery Science and Technology. 2007;17(6):421–430. doi: 10.1016/S1773-2247(07)50083-3.

Bhattacharjee A et al. Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;585:124071. doi: 10.1016/j.colsurfa.2019.124071.

Ranch KM, Maulvi FA, Naik MJ, Koli AR, Parikh RK, and Shah DO. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: In vitro, ex vivo, in vivo and human studies. International Journal of Pharmaceutics. 2019;554:264–275. doi: 10.1016/j.ijpharm.2018.11.016.

Patil SS, Bade A, and Tagalpallewar A. Design, optimization and pharmacodynamic comparison of dorzolamide hydrochloride soluble ocular drug insert prepared by using 32 factorial design. Journal of Drug Delivery Science and Technology. 2018;46:138–147. doi: 10.1016/j.jddst.2018.05.010.

Abdelbary AA, Abd-Elsalam WH, and Al-mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in vivo safety assessment. International Journal of Pharmaceutics. 2016;513(1):688–696. doi: 10.1016/j.ijpharm.2016.10.006.

Chopra AK, Marwaha RK, Kaushik D, and Dureja H. Box-Behnken designed fluconazolel chitosan nanoparticles for ocular delivery. SciTechnol. 2014. Available from https://www.scitechnol.com/boxbehnken-designed-fluconazole-loaded-chitosan-nanoparticles-for-ocular-delivery-9tum.php?article_id=2488.

Avinash K and Ajay S. Formulation and evaluation of thermoreversible in situ occular gel of clonidine hidrocloride glaucomma- pharmacophore. 2015. Available from https://pharmacophorejournal.com/en/article/formulation-and-evaluation-of-thermoreversible-in-situ-ocular-gel-of-clonidine-hydrochloride-for-glaucoma.

Garg V et al. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. European J. Phar. Sci. 2017;109:297–315. doi: 10.1016/j.ejps.2017.08.022.

Arya A et al. Bioflavonoid hesperetin overcome bicalutamide induced toxicity by co-delivery in novel SNEDDS formulations: Optimization, in vivo evaluation and uptake mechanism. Materials Sci. Eng. 2017;71:954–964. doi: 10.1016/j.msec.2016.11.006.

Villar AMS, Naveros BC, Campmany ACC, Trenchs MA, Rocabert CB, and H. Bellowa L. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil. Int. J. Pharm. 2012;431(1):161–175. doi: 10.1016/j.ijpharm.2012.04.001.

Singh G and Pai RS. Optimized self-nanoemulsifying drug delivery system of atazanavir with enhanced oral bioavailability: in vitro/in vivo characterization. Expert opinion on drug delivery. 2014;11(7):1023–1032. doi: 10.1517/17425247.2014.913566.

Marasini N, Yan YD, Poudel BK, Choi HG, Yong CS, and Kim JO. Development and optimization of self-nanoemulsifying drug delivery system with enhanced bioavailability by Box-Behnken design and desirability function. J Pharm Sci, 2012;101(12):4584–4596. doi: 10.1002/jps.23333.

Parmar K, Patel J, and Sheth N. Self nano-emulsifying drug delivery system for Embelin: Design, characterization and in-vitro studies. Asian J. Pharm. Sci. 2014; (5):396–404. doi: 10.1016/j.ajps.2015.04.006.

Dash RN, Mohammed H, Humaira T, and Ramesh D. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Saudi Pharm J. 2015;23(5):528–540. doi: 10.1016/j.jsps.2015.01.024.

Michaelis M and Leopold CS. Mixture design approach for early stage formulation development of a transdermal delivery system. Drug development and Ind. Pharm. 2015;41(9):1532–1540.doi:10.3109/03639045.2014.971029.

Duangjit S, Mehr LM, Kumpugdee-Vollrath M, and Ngawhirunpat T. Role of simplex lattice statistical design in the formulation and optimization of microemulsions for transdermal delivery. Biological and Pharmaceutical Bulletin. 2014;37(12):1948–1957. doi: 10.1248/bpb.b14-00549.

Damayanti D, Sari IP, Sulaiman TNS, Bestari AN, and Setiawan IM. The formulation of pacing (Costus speciosus) extract tablet by using Avicel®Ph 200 as filler-binder and amylum as disintegration agent. Indonesian Journal of Pharmacy. 2018;29(1). doi: 10.14499/indonesianjpharm29iss1pp29.

Putra IGNAD, Murwanti R, Rohman A, and Sulaiman TNS. Optimizing formulation of mini tablets floating ranitidine HCl using fully pregelatinized starch (manihot esculenta crantz) with simplex lattice design. Int. J. of Appl. Pharm. 2019;11(4):32–40. doi: 10.22159/ijap.2019v11i4.32657.

Astuti IY, Marchaban M, Martien R, and Nugroho AE. Design and Optimization of self sano-emulsifying drug delivery system containing a new anti-inflamatory agent pentagamavunon-0 | Astuti |. Indonesian Journal of Chemistry. 2017. Available from https://jurnal.ugm.ac.id/ijc/article/view/22640.

Fithri NA, Mardiyanto M, Novita RP, and Andrean V. Furosemide self nano emulsifying drug delivery system (SNEDDS) formulation comprising of capryol-90, polysorbate-80, and peg-400 with simplex-lattice-design. STI. 2017; 2(4):85–88. doi: 10.26554/sti.2017.2.4.85-88.

Pratiwi L. Self-nanoemulsifying Drug Delivery System (Snedds) for Topical Delivery of Mangosteen Peels (Garcinia Mangostana L.,): Formulation Design and In vitro Studies. Journal of Young Pharmacists. 2017;9(3):341–346. doi: 10.5530/jyp.2017.9.68.

Murrukmihadi M, Optimasi formila sediaan sirup mukolitik in vitro fraksi terstandar bunga kembang sepatu (Hibiscus rosa-sinensis L.). Dr. Diss., Universitas Gadjah Mada, 2013. Available from: http://etd.repository.ugm.ac.id/home/detail_pencarian/57438.

Esim O, Savaser A. Ozkan CK, Bayrak Z, Tas C, and Ozkan Y. Effect of polymer type on characteristics of buccal tablets using factorial design. Saudi Pharmaceutical Journal, 2018;26(1):53–63. doi: 10.1016/j.jsps.2017.10.013.

Published

07-06-2022

How to Cite

SOPYAN, I., GOZALI, D., SRIWIDODO, & GUNTINA, R. K. (2022). DESIGN EXPERT SOFTWARE (DOE): AN APLICATION TOOL FOR OPTIMIZATION IN PHARMACEUTICAL PREPARATIONS FORMULATION. International Journal of Applied Pharmaceutics, 14(4). https://doi.org/10.22159/ijap.2022v14i4.45144

Issue

Section

Review Article(s)

Most read articles by the same author(s)

1 2 3 > >>