METHODS FOR IMPROVING ALPHA-MANGOSTIN SOLUBILITY: A REVIEW

  • NURUL FAJERIYATI Department of Pharmaceutical Analysis and Medisinal Chemistry, Fakulty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
  • MUCHTARIDI MUCHTARIDI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
  • IYAN SOPYAN Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjdjaran University, Sumedang, Indonesia

Abstract

Solubility is an important parameter to achieve for the bioavailability of a drug to reach the therapeutic windows. Garcinia mangostana Linn is a plant with great potency for the development of natural medicine. Alpha-mangostin is one of the secondary metabolites of G. mangostana and has been reported to have several pharmacological activities. The Biopharmaceutics Classification System (BCS) is a system that classifies drugs based on their solubility and permeability. Due to its low solubility but high permeation, alpha-mangostin is categorized into class II of the Biopharmaceutics Classification System. Therefore, the determination of dosage forms and modification of solubility enhancers is limited due to its physical properties, as mentioned above. This disadvantage requires new methods to improve its solubility to administer alpha-mangostin, especially for oral administration. Here, we discuss the development of the methods to increase alpha-mangostin solubility to be applied to formulate a dosage form to reach a useful plasma level for medication.

Keywords: Alpha-mangostin, Solubility, Drug delivery system

References

1. J. Rohn, “Pharmacokinetics and Preformulation,” pp. 17–37, 2017, doi: 10.1016/B978-0-12-804731-6.00002-9.
2. V. R. Vemula, V. Lagishetty, and S. Lingala, “Solubility enhancement techniques,” Int. J. Pharm. Sci. Rev. Res., vol. 5, no. 1, pp. 41–51, 2010.
3. D. W. Schimid, “Ueber Mangostin,” pp. 83–88, 1849.
4. M. Ahmad, B. M. Yamin, and A. M. Lazim, “A study on dispersion and characterisation of ? -mangostin loaded pH sensitive microgel systems,” pp. 2–7, 2013.
5. A. F. A. Aisha, A. Malik, S. Abdulmajid, Z. Ismail, S. A. Alrokayan, and K. M. Abu-salah, “Development of Polymeric Nanoparticles of Garcinia mangostana Xanthones in Eudragit RL100 / RS100 for Anti-Colon Cancer Drug Delivery,” vol. 2015, no. Figure 1, pp. 4–7, 2015.
6. X. Fei et al., “Synthesis of xanthone derivatives based on ?-mangostin and their biological evaluation for anti-cancer agents,” Bioorganic and Medicinal Chemistry Letters, vol. 24, no. 9. pp. 2062–2065, 2014, doi: 10.1016/j.bmcl.2014.03.047.
7. P. D. Sampath and K. Vijayaraghavan, “Cardioprotective Effect of ?-Mangostin, a Xanthone Derivative from Mangosteen on Tissue Defense System Against Isoproterenol-InducedMyocardial Infarction in Rats.” pp. 336–339, 2007, doi: 10:1002/jbt.20199.
8. L. G. Chen, L. L. Yang, and C. C. Wang, “Anti-inflammatory activity of mangostins from Garcinia mangostana,” Food Chem. Toxicol., vol. 46, no. 2, pp. 688–693, 2008, doi: 10.1016/j.fct.2007.09.096.
9. W. Pothitirat, M. T. Chomnawang, R. Supabphol, and W. Gritsanapan, “Comparison of bioactive compounds content, free radical scavenging and anti-acne inducing bacteria activities of extracts from the mangosteen fruit rind at two stages of maturity,” Fitoterapia, vol. 80, no. 7, pp. 442–447, 2009, doi: 10.1016/j.fitote.2009.06.005.
10. P. Sudta, P. Jiarawapi, A. Suksamrarn, P. Hongmanee, and S. Suksamrarn, “Potent activity against multidrug-resistant Mycobacterium tuberculosis of ?-mangostin analogs,” Chem. Pharm. Bull., vol. 61, no. 2, pp. 194–203, 2013, doi: 10.1248/cpb.c12-00874.
11. H. A. Jung, B. N. Su, W. J. Keller, R. G. Mehta, and A. D. Kinghorn, “Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen),” J. Agric. Food Chem., vol. 54, no. 6, pp. 2077–2082, 2006, doi: 10.1021/jf052649z.
12. J. J. Koh et al., “Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 834–844, 2013, doi: 10.1016/j.bbamem.2012.09.004.
13. R. Kaomongkolgit, K. Jamdee, and N. Chaisomboon, “Antifungal activity of alpha-mangostin against Candida albicans,” J. Oral Sci., vol. 51, no. 3, pp. 401–406, 2009.
14. Y. Zhao et al., “A Method of Effectively Improved ?-Mangostin Bioavailability,” Eur. J. Drug Metab. Pharmacokinet., vol. 41, no. 5, pp. 605–613, 2016, doi: 10.1007/s13318-015-0283-4.
15. A. F. A. Aisha, Z. Ismail, K. M. Abu-Salah, and A. M. S. A. Majid, “Solid Dispersions of ?-Mangostin Improve Its Aqueous Solubility Through Self-Assembly of Nanomicelles.” pp. 815–825, 2011, doi: 10.1002/jps.22806.
16. K. T. Savjani, A. K. Gajjar, and J. K. Savjani, “Drug Solubility: Importance and Enhancement Techniques,” ISRN Pharm., vol. 2012, no. 100 mL, pp. 1–10, 2012, doi: 10.5402/2012/195727.
17. E. Kerns, L. Di, and G. Carter, “In Vitro Solubility Assays in Drug Discovery,” Curr. Drug Metab., vol. 9, no. 9, pp. 879–885, 2008, doi: 10.2174/138920008786485100.
18. S. Kasimedua, S. R. Thoppani, N. Pommalab, G. Orugonda, and J. Yelamanda, “a Review on Solubility Enhancement Techniques,” J. Compr. Pharm., vol. 2, no. 2, pp. 36–41, 2015, doi: 10.37483/jcp.2015.2202.
19. R. V. Mantri, R. Sanghvi, and H. J. Zhu, Solubility of pharmaceutical solids. Elsevier Inc., 2017.
20. H. Kansara, R. Panola, and A. Mishra, “Techniques used to enhance bioavailability of bcs class II drugs: A review,” Int. J. Drug Dev. Res., vol. 7, no. 1, pp. 82–93, 2015.
21. A. Chaudhary, U. Nagaich, N. Gulati, V. Sharma, R. Khosa, and M. Partapur, “Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review,” J Adv Pharm Educ Res, vol. 2, no. 1, pp. 32–67, 2012.
22. A. Dahan, J. M. Miller, and G. L. Amidon, “Prediction of solubility and permeability class membership: Provisional BCS classification of the world’s top oral drugs,” AAPS J., vol. 11, no. 4, pp. 740–746, 2009, doi: 10.1208/s12248-009-9144-x.
23. M. Yasir, M. Asif, A. Kumar, and A. Aggarval, “Biopharmaceutical classification system: An account,” Int. J. PharmTech Res., vol. 2, no. 3, pp. 1681–1690, 2010.
24. H. Vermeersch, “Solubility and Permeation Studies Using Soluplus ® and HPMC with a BCS Class II Amorphous Drug,” 2016.
25. L. Li et al., “Pharmacokinetics of ?-mangostin in rats after intravenous and oral application,” Mol. Nutr. Food Res., vol. 55, no. SUPPL. 1, pp. 67–74, 2011, doi: 10.1002/mnfr.201000511.
26. “Alpha mangostin.” https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Mangostin.
27. A. Ramaiya, G. Li, S. M. Petiwala, and J. J. Johnson, “Single Dose Oral Pharmacokinetic Profile of ?-Mangostin in Mice,” Curr. Drug Targets, vol. 13, no. 14, pp. 1698–1704, 2012, doi: 10.2174/138945012804545524.
28. P. Pan-In, A. Tachapruetinun, N. Chaichanawongsaroj, W. Banlunara, S. Suksamrarn, and S. Wanichwecharungruang, “Combating Helicobacter pylori infections with mucoadhesive nanoparticles loaded with Garcinia mangostana extract,” Nanomedicine, vol. 9, no. 3, pp. 457–468, 2014, doi: 10.2217/nnm.13.30.
29. P. Pan-In, S. Wanichwecharungruang, J. Hanes, and A. J. Kim, “Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles,” Int. J. Nanomedicine, vol. 9, no. 1, pp. 3677–3686, 2014, doi: 10.2147/IJN.S66511.
30. G. S. Chin, H. Todo, W. R. Kadhum, M. A. Hamid, and K. Sugibayashi, “In Vitro Permeation and Skin Retention of ? Mangostin Proniosome.pdf,” Chem. Pharm. Bull. 64, vol. 64, p. 2016.
31. S. Yang et al., “Applying an innovative biodegradable self assembly nanomicelles to deliver ?mangostin for improving anti melanoma activity.pdf,” 2019, doi: https://doi.org/10.1038/s41419-019-1323-9.
32. W. Samprasit, T. Rojanarata, P. Akkaramongkolporn, T. Ngawhirunpat, R. Kaomongkolgit, and P. Opanasopit, “Fabrication and In Vitro In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing ? Mangostin.pdf,” 2015.
33. W. K. Xu, H. Jiang, K. Yang, Y. Q. Wang, Q. Zhang, and J. Zuo, “Development and in vivo evaluation of self-microemulsion as delivery system for ?-mangostin,” Kaohsiung J. Med. Sci., vol. 33, no. 3, pp. 116–123, 2017, doi: 10.1016/j.kjms.2016.12.003.
34. W. Limwikrant, T. Aung, K. Chooluck, S. Puttipipatkhachorn, and K. Yamamoto, “Size reduction efficiency of alpha-mangostin suspension using high-pressure homogenization,” Chem. Pharm. Bull., vol. 67, no. 4, pp. 389–392, 2019, doi: 10.1248/cpb.c18-00589.
35. A. A. Elsaid Ali, M. Taher, and F. Mohamed, “Microencapsulation of alpha-mangostin into PLGA microspheres and optimization using response surface methodology intended for pulmonary delivery,” J. Microencapsul., vol. 30, no. 8, pp. 728–740, 2013, doi: 10.3109/02652048.2013.788081.
36. A. Iqbal, N. A. Muhammad Shuib, D. S. Darnis, M. Miskam, N. R. Abdul Rahman, and F. Adam, “Synthesis and characterisation of rice husk ash silica drug carrier for ?-mangostin,” Journal of Physical Science, vol. 29, no. 3. pp. 95–107, 2018, doi: 10.21315/jps2018.29.3.8.
37. S. Phunpee et al., “Controllable encapsulation of ?-mangostin with quaternized ?-cyclodextrin grafted chitosan using high shear mixing,” Int. J. Pharm., vol. 538, no. 1–2, pp. 21–29, 2018, doi: 10.1016/j.ijpharm.2017.12.016.
38. W. Hotarat et al., “Encapsulation of alpha-mangostin and hydrophilic beta-cyclodextrins revealed by all-atom molecular dynamics simulations,” J. Mol. Liq., vol. 288, p. 110965, 2019, doi: 10.1016/j.molliq.2019.110965.
39. P. Liza, A. Fudholi, R. Martien, and S. Pramono, “Self-nanoemulsifying Drug Delivery System (Snedds) for Topical Delivery of Mangosteen Peels (Garcinia Mangostana L.,): Formulation Design and In Vitro Studies,” J. Young Pharm., vol. 9, no. 1, pp. 107–114, 2017, doi: 10.5530/jyp.2017.
40. S. Kalepu and V. Nekkanti, “Improved delivery of poorly soluble compounds using nanoparticle technology: a review,” Drug Deliv. Transl. Res., vol. 6, no. 3, pp. 319–332, 2016, doi: 10.1007/s13346-016-0283-1.
41. B. Irving, “Nanoparticle drug delivery systems,” Innovations in Pharmaceutical Technology, no. 24. 2007.
42. M. Boži? et al., “Effect of different surface active polysaccharide derivatives on the formation of ethyl cellulose particles by the emulsion-solvent evaporation method,” Cellulose, vol. 25, no. 12, pp. 6901–6922, 2018, doi: 10.1007/s10570-018-2062-2.
43. P. Pan-in, A. Wongsomboon, and C. Kokpol, “Depositing a -mangostin nanoparticles to sebaceous gland area for acne treatment,” vol. 129, pp. 226–232, 2015, doi: 10.1016/j.jphs.2015.11.005.
44. D. L. Minnick, R. A. Flores, M. R. Destefano, and A. M. Scurto, “Cellulose Solubility in Ionic Liquid Mixtures?: Temperature , Cosolvent , and Antisolvent E ff ects,” 2016, doi: 10.1021/acs.jpcb.6b04309.
45. S. P. Chaudhari and R. P. Dugar, “Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs,” J. Drug Deliv. Sci. Technol., vol. 41, pp. 68–77, 2017, doi: 10.1016/j.jddst.2017.06.010.
46. N. Recharla, M. Riaz, S. Ko, and S. Park, “Novel technologies to enhance solubility of food-derived bioactive compounds: A review,” J. Funct. Foods, vol. 39, pp. 63–73, 2017, doi: 10.1016/j.jff.2017.10.001.
47. M. Crabbe-Mann, D. Tsaoulidis, M. Parhizkar, and M. Edirisinghe, “Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents,” Cellulose, vol. 25, no. 3, pp. 1687–1703, 2018, doi: 10.1007/s10570-018-1673-y.
48. G. Zoubari, R. Ali, and A. Dashevskiy, “Water-soluble and -insoluble polymers as binders for pellet preparation by extrusion/spheronization,” J. Drug Deliv. Sci. Technol., vol. 49, pp. 1–5, 2019, doi: 10.1016/j.jddst.2018.10.030.
49. S. Mazumder, A. K. Dewangan, and N. Pavurala, “Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices,” Asian J. Pharm. Sci., vol. 12, no. 6, pp. 532–541, 2017, doi: 10.1016/j.ajps.2017.07.002.
50. E. Zaini, V. Z. Putri, M. D. Octavia, and F. Ismed, “Peningkatan Laju Disolusi Dispersi Padat Amorf Genistein dengan PVP K-30,” J. Sains Farm. Klin., vol. 4, no. 1, p. 67, 2017, doi: 10.29208/jsfk.2017.4.1.197.
51. S. Gurunath, S. Pradeep Kumar, N. K. Basavaraj, and P. A. Patil, “Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs,” J. Pharm. Res., vol. 6, no. 4, pp. 476–480, 2013, doi: 10.1016/j.jopr.2013.04.008.
52. N. Ogawa et al., “Improvement in the water solubility of drugs with a solid dispersion system by spray drying and hot-melt extrusion with using the amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and D-mannitol,” Eur. J. Pharm. Sci., vol. 111, pp. 205–214, 2018, doi: 10.1016/j.ejps.2017.09.014.
53. Kumar and B, “Solid Dispersion- A Review,” PharmaTutor, vol. 5, no. 2, pp. 24–29, 2017, [Online]. Available: https://www.pharmatutor.org/articles/solid-dispersion-review.
54. J. Singh, M. Walia, and S. L. Harikumar, “Solubility Enhancement By Solid Dispersion Method: a Review,” J. Drug Deliv. Ther., vol. 3, no. 5, pp. 148–155, 2013, doi: 10.22270/jddt.v3i5.632.
55. J. Kaur, G. Aggarwal, G. Singh, and A. C. Rana, “Improvement Of Drug Solubilty Using Solid Dispersion,” vol. 4, no. 2, 2012, doi: ISSN- 0975-1491.
56. P. Tran, Y. C. Pyo, D. H. Kim, S. E. Lee, J. K. Kim, and J. S. Park, “Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs,” Pharmaceutics, vol. 11, no. 3, pp. 1–26, 2019, doi: 10.3390/pharmaceutics11030132.
57. D. Jeli?, T. Liavitskaya, and S. Vyazovkin, “Thermal stability of indomethacin increases with the amount of polyvinylpyrrolidone in solid dispersion,” Thermochim. Acta, vol. 676, no. April, pp. 172–176, 2019, doi: 10.1016/j.tca.2019.04.011.
58. D. C. Bibby, N. M. Davies, and I. G. Tucker, “Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems,” Int. J. Pharm., vol. 197, no. 1–2, pp. 1–11, 2000, doi: 10.1016/S0378-5173(00)00335-5.
59. V. T. H. Doan et al., “Cyclodextrin based nanoparticles encapsulating ? mangostin and their drug release behavior.pdf,” 2019, doi: https:// doi.org/10.1038/s41428-019-0296-y.
60. D. Dermawan, N. Wathoni, and M. Muchtaridi, “Host Guest Interactions of ? Mangostin with (?,?,?) cyclodextrins.pdf,” J. Young Pharm., vol. 11, no. 1, pp. 31–35, 2019.
61. W. Hotarat, B. Nutho, PeterWolschann, T. Rungrotmongkol, and S. Hannongbua, “Delivery of Alpha-Mangostin Using Cyclodextrins through a Biological Membrane?: Molecular,” 2020, doi: doi:10.3390/molecules25112532.
62. Q. Shihong et al., “Delivery of Tanshinone IIA and ? mangostin from Gold PEI Cyclodextrin nanoparticle platform design for prostat cancer.pdf.” 2009, doi: : http://dx.doi.org/10.1016/j.bmcl.2016.03.097.
63. L. Adhikar, A. Semalty, and M. Semalty, “Binary Complexes Of Glimepiride With ?-Cyclodextrin For Improved Solubility And Drug Delivery,” 2019.
64. P. P. R. Pranjali W. Chandurkara, Tushar A. Shindea, Anup M.Akarteb, “Effect of Trimethoprim Inclusion Complexation with Cyclodextrins on its Antimicrobial Activity,” Chem. Methodol., vol. 3, no. 2, pp. 211–225, 2018, doi: 10.22034/chemm.2018.147111.1084.
65. D. R. Tobergte and S. Curtis, “Self Microemulsifying Drug Delivery System: A Lipid Based Drug Delivery System,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013, doi: 10.1017/CBO9781107415324.004.
66. A. Nasr, A. Gardouh, and M. Ghorab, “Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation,” Pharmaceutics, vol. 8, no. 3, 2016, doi: 10.3390/pharmaceutics8030020.
67. V. P. Chavda and D. Shah, Self-emulsifying delivery systems: one step ahead in improving solubility of poorly soluble drugs. Elsevier Inc., 2017.
68. H. Singh et al., “Development and characterization of Solid-SNEDDS formulation of DHA using hydrophilic carrier with improved shelf life, oxidative stability and therapeutic activity,” J. Drug Deliv. Sci. Technol., vol. 54, 2019, doi: 10.1016/j.jddst.2019.101326.
69. S. Chaudhary, M. Aqil, Y. Sultana, and M. A. Kalam, “Self-nanoemulsifying drug delivery system of nabumetone improved its oral bioavailability and anti-inflammatory effects in rat model,” J. Drug Deliv. Sci. Technol., vol. 51, pp. 736–745, 2019, doi: 10.1016/j.jddst.2018.04.009.
70. N. Akhtar et al., “Self-Generating nano-emulsifying technology for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs,” J. Drug Deliv. Sci. Technol., p. 101808, 2020, doi: 10.1016/j.jddst.2020.101808.
71. K. Sanka, D. Suda, and V. Bakshi, “Optimization of solid-self nanoemulsifying drug delivery system for solubility and release profile of clonazepam using simplex lattice design,” J. Drug Deliv. Sci. Technol., vol. 33, pp. 114–124, 2016, doi: 10.1016/j.jddst.2016.04.003.
Statistics
6 Views | Downloads
Citations
How to Cite
FAJERIYATI, N., MUCHTARIDI, M., & SOPYAN, I. (2021). METHODS FOR IMPROVING ALPHA-MANGOSTIN SOLUBILITY: A REVIEW. International Journal of Applied Pharmaceutics, 13(4). https://doi.org/10.22159/ijap.2021v13i4.39065
Section
Review Article(s)