ADDITIVE CYTOTOXIC EFFECT OF CISPLATIN AND ANDROGRAPHIS PANICULATA EXTRACT THROUGH THE MODULATION OF APOPTOTIC MARKERS, CYCLIN-D AND VEGF EXPRESSIONS IN SKOV3 OVARIAN CANCER CELL LINE

Authors

  • FARA VITANTRI DIAH Doctoral Program in Medical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Department of Obstetrics and Gynecology, Syarif Hidayatullah State Islamic University Jakarta, Jakarta, Indonesia https://orcid.org/0009-0009-3761-5045
  • NUZLI FAHDIA MAZFUFAH Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-9020-831X
  • WAWAIMULI AROZAL Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-8071-9001
  • MELVA LOUISA Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-9451-0380
  • SEPTELIA INAWATI WANANDI Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
  • SOMASUNDARAM ARUMUGAM Department of Pharmacology and Toxicolgy, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India https://orcid.org/0000-0002-2096-2552
  • REMYA SREEDHAR Department of Pharmacy, Sister Nivedita University, Kolkata, India
  • PUSPITA EKA WUYUNG Department of Pharmacy, Sister Nivedita University, Kolkata, India

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52654

Keywords:

Andrographolide, Apoptosis, Angiogenesis, Cycle cell, Ovarian cancer, SKOV3

Abstract

Objective: This study aims to investigate the possibility of additive cytotoxic effects of cisplatin and Andrographis paniculate (Burm.f.) Nees(AP) via apoptotic, cell cycle and angiogenesis pathways.

Methods: CC50 cisplatin, AP and Andrographolide (AG) were determined by the cell viability of SKOV3 after its exposure to these substances. SKOV3 cells were then divided into 6 experimental groups: one negativecontrol group, one with CC50 cisplatin alone, and three where CC50 was combined with CC50 AP, ½CC50 AP, and 1.5CC50 AP respectively. The additive cytotoxic effect of cisplatin with AP or AG was evaluated through the modulation of several pathways via qRT-PCR of theirmarkers: apoptotic pathways indicated by Bax, BCL2, Caspase 3 and Caspase 9 expression; cell cycle indicated by Cyclin-D expression; angiogenesis pathways by VEGF expression.

Results: Cisplatin reduces cell viability to 54%, 37% when combined with AG, and 30%, 23% and 20% with ½CC50 AP, CC50 AP and 1.5CC50 AP respectively. AG and AP extract decreases SKOV3 cell viability in a dose-dependent manner. Cisplatin combined with AP showed a statistically significant increase in BAX, Caspase 3, Caspase 9 expression, and a decrease in BCL2 which indicated synergy in apoptotic pathways. The best result was seen in cisplatin combined with ½CC50 AP. A decrease in Cyclin D and VEGF was seen in all groups, the best seen in ½CC50 AP and CC50 AP respectively, showing optimal cell cycle arrest and anti-angiogenesis properties when cisplatin is combined with AP extract.

Conclusion: Combining cisplatin with AP extract enhanced cell cycle arrest, apoptosis, and anti-angiogenesis properties.

Downloads

Download data is not yet available.

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J. Clin. 2021 Feb 4;71(3):209–49. doi:10.3322/caac.21660

IARC. Incidence, females, in 2022.[amended 2022; cited 2024 Oct]. In: Global Cancer Observatory [internet]. France: World Health Organization. c2022. Available from https://gco.iarc.who.int/today/en/dataviz/tables?mode=population&populations=903_904_905_908_909_935&group_populations=0&multiple_populations=1&cancers=25&sexes=2

Nisha NC, Sreekumar S, Biju CK. Identification of lead compounds with cobra venom detoxification activity in andrographis paniculata (Burm.f.) Nees through in silico method. Int. J. Pharm. Pharm. Sci. 2016 Jul;8(7):212–7. https://journals.innovareacademics.in/index.php/ijpps/article/view/11669

Warditiani NK, Susanti NM, Arisanti CI, Putri NP, Wirasuta IM. Antidyslipidemia and antioxidant activity of andrographolide compound from Sambiloto (andrographis paniculata) herb. Int. J. Pharm. Pharm. Sci. 2017 Jul 1;9(7):59. doi:10.22159/ijpps.2017v9i7.18109

Therasa SA, Sobiya G, Parimala SM. Leaves of andrographis paniculata is an antioxidant and anticancer agent. Asian J. Pharm. Clin. Res. 2020 Aug 8;13(8):213–7. doi:10.22159/ajpcr.2020.v13i8.37014

Mao W, He P, Wang W, Wu X, Wei C. Andrographolide sensitizes hep-2 human laryngeal cancer cells to carboplatin-induced apoptosis by increasing reactive oxygen species levels. Anti-Cancer Drugs. 2019 Aug;30(7):731–9. doi:10.1097/cad.0000000000000774

Dai J, Lin Y, Duan Y, Li Z, Zhou D, Chen W, et al. Andrographolide inhibits angiogenesis by inhibiting the mir-21-5p/timp3 signaling pathway. Int. J. Biol. Sci. 2017 May 16;13(5):660–8. doi:10.7150/ijbs.19194

Banerjee M, Chattopadhyay S, Choudhuri T, Bera R, Kumar S, Chakraborty B, et al. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line. J. Biomed. Sci. (London, U. K.). 2016 Apr 16;23(1). doi:10.1186/s12929-016-0257-0

Khatimah NG, Arozal W, Barinda AJ, Antarianto RD, Hardiany NS, Shimizu I, et al. Andrographis paniculata ethanol extract alleviates high glucose-induced senescence of human umbilical vein endothelial cells via the regulation of mTOR and Sirt1 Pathways. The Indonesian Biomedical Journal. 2024 Aug 28;16(4):333–42. doi:10.18585/inabj.v16i4.3067

S. R, R. V, P. A. GCMS analysis on andrographis paniculata seed extract and its anticancer activity. Int. J. Appl. Pharm. 2022 Jul 28;84–8. doi:10.22159/ijap.2022.v14ti.5

Rajeshkumar S, Nagalingam M, Ponnanikajamideen M, Vanaja M, Malarkodi C. Anticancer activity of andrographis paniculata leaves extract against neuroblastima (IMR-32) and human colon (HT-29) cancer cell line. World J. Pharm. Pharm. Sci. 2015 May 27;4(6):1667–75. doi:https://storage.googleapis.com/innctech/wjpps/article_issue/1433487465.pdf

Goel N, Gajbhiye RL, Saha M, Nagendra C, Reddy AM, Ravichandiran V, et al. A comparative assessment of in vitro cytotoxic activity and phytochemical profiling of andrographis nallamalayana j.l.ellis and andrographis paniculata (burm. f.) nees using UPLC-QTOF-MS/Ms Approach. RSC Adv. 2021 Nov 8;11(57):35918–36. doi:10.1039/d1ra07496b

Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, et al. The therapeutic potential of andrographolide in cancer treatment. Biomedicine & Pharmacotherapy. 2024 Nov;180:117438. doi:10.1016/j.biopha.2024.117438

Liu S-H, Lin C-H, Liang F-P, Chen P-F, Kuo C-D, Alam MohdM, et al. Andrographolide downregulates the V-src and BCR-ABL oncoproteins and induces hsp90 cleavage in the Ros-dependent suppression of cancer malignancy. Biochem. Pharmacol. (Amsterdam, Neth.). 2014 Jan;87(2):229–42. doi:10.1016/j.bcp.2013.10.014

Zhang Q-Q, Ding Y, Lei Y, Qi C-L, He X-D, Lan T, et al. Andrographolide suppress tumor growth by inhibiting TLR4/NF-ΚB signaling activation in insulinoma. Int. J. Biol. Sci. 2014;10(4):404–14. doi:10.7150/ijbs.7723

Tundis R, Patra JK, Bonesi M, Das S, Nath R, Das Talukdar A, et al. Anti-cancer agent: The Labdane diterpenoid-Andrographolide. Plants. 2023 May 12;12(10):1969. doi:10.3390/plants12101969

Chen S, Hu H, Miao S, Zheng J, Xie Z, Zhao H. Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo. Tumor Biol. 2017 May;39(5):101042831770533. doi:10.1177/1010428317705330

Dehkordi MH, Munn RG, Fearnhead HO. Non-canonical roles of apoptotic caspases in the nervous system. Frontiers in Cell and Developmental Biology. 2022 Feb 23;10. doi:10.3389/fcell.2022.840023

D’Arcy MS. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International. 2019 Apr 25;43(6):582–92. doi:10.1002/cbin.11137

Chen Z, Tang W-J, Zhou Y-H, Chen Z-M, Liu K. Andrographolide inhibits non-small cell lung cancer cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming host glucose metabolism. Ann. Transl. Med.. 2021 Nov;9(22):1701–1701. doi:10.21037/atm-21-5975

Bhat MA, Murthy HN. Isolation of andrographolide from andrographis lineata wall. ex nees var. Lawii C.B. Clarke and its anticancer activity against human ovarian Teratocarcinoma. Pharmacogn. J. 2021 May 5;13(3):660–8. doi:10.5530/pj.2021.13.84

Wanandi SI, Limanto A, Yunita E, Syahrani RA, Louisa M, Wibowo AE, et al. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS One. 2020 Nov 19;15(11). doi:10.1371/journal.pone.0240020

Montalto FI, De Amicis F. Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells. 2020 Dec 9;9(12):2648. doi:10.3390/cells9122648

Liu G, Chu H. Andrographolide inhibits proliferation and induces cell cycle arrest and apoptosis in human melanoma cells. Oncol. Lett. 2018 Feb 2;15(4):5301–5. doi:10.3892/ol.2018.7941

Martínez-Limón A, Joaquin M, Caballero M, Posas F, de Nadal E. The P38 pathway: From biology to cancer therapy. Int. J. Mol. Sci.. 2020 Mar 11;21(6):1913. doi:10.3390/ijms21061913

Othman NS, Mohd Azman DK. Andrographolide induces G2/M cell cycle arrest and apoptosis in human glioblastoma DBTRG-05MG cell line via ERK1/2 /c-myc/p53 signaling pathway. Molecules. 2022 Oct 8;27(19):6686. doi:10.3390/molecules27196686

Mehdizadeh R, Madjid Ansari A, Forouzesh F, Shahriari F, Shariatpanahi SP, Salaritabar A, et al. P53 status, and G2/M cell cycle arrest, are determining factors in cell-death induction mediated by Elf-EMF in glioblastoma. Sci. Rep. 2023 Jul 5;13(1):10845. doi:10.1038/s41598-023-38021-z

Khan I, Khan F, Farooqui A, Ansari IA. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr. Cancer. 2018 May 21;70(5):787–803. doi:10.1080/01635581.2018.1470649

Dai L, Wang G, Pan W. Andrographolide inhibits proliferation and metastasis of SGC7901 gastric cancer cells. BioMed Res. Int. 2017 Jan 18;2017:6242103. doi:10.1155/2017/6242103

Rajeswari S, Vidya R. Antiproliferative activity of andrographis paniculata seed extracts on hepatocellular carcinoma cells. International journal of health sciences. 2022 Aug 1;6(S4):11848–59. doi:10.53730/ijhs.v6ns4.11409

Wong CC, Lim SH, Sagineedu SR, Lajis NH, Stanslas J. Srj09, a promising anticancer drug lead: Elucidation of mechanisms of antiproliferative and apoptogenic effects and assessment of in vivo antitumor efficacy. Pharmacol. Res. 2016 May;107:66–78. doi:10.1016/j.phrs.2016.02.024

Suriyo T, Pholphana N, Rangkadilok N, Thiantanawat A, Watcharasit P, Satayavivad J. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis. Planta Med. 2014 Apr 29;80(07):533–43. doi:10.1055/s-0034-1368399

Islam MT, Ali ES, Uddin SJ, Islam MdA, Shaw S, Khan IN, et al. Andrographolide, a diterpene lactone from andrographis paniculata and its therapeutic promises in cancer. Cancer Lett. 2018 Apr;420:129–45. doi:10.1016/j.canlet.2018.01.074

Peng T, Hu M, Wu T-T, Zhang C, Chen Z, Huang S, et al. Andrographolide suppresses proliferation of nasopharyngeal carcinoma cells via attenuating nf-. BioMed Res. Int. 2015;2015:1–7. doi:10.1155/2015/735056

Shi L, Zhang G, Zheng Z, Lu B, Ji L. Andrographolide reduced VEGFA expression in hepatoma cancer cells by inactivating hif-1α: The involvement of JNK and MTA1/HDCA.Chem.-Biol. Interact. 2017 Aug;273:228–36. doi:10.1016/j.cbi.2017.06.024

Nugrahaningsih N, Sarjadi S, Dharmana E, Subagio HW. VEGF expression of adenocarcinoma mammae after oral administration of Androgrpahis paniculata extract. Indonesian Journal of Pharmaceutical Sciences. 2015 Apr;13(1):29–34. doi:http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/116

Kajal K, Panda AK, Bhat J, Chakraborty D, Bose S, Bhattacharjee P, et al. Andrographolide binds to ATP-binding pocket of VEGFR2 to impede VEGFA-mediated tumor-angiogenesis. Sci. Rep. 2019 Mar 11;9(1). doi:10.1038/s41598-019-40626-2

Rajendrakumar T, Rao S, Satyanarayana M, Narayanaswamy H, Byregowda S. Effect of Andrographis paniculata on cisplatin induced renal histopathology in Wistar albino rats. Journal of Entomology and Zoology Studies. 2020;8(3):589–96. doi:https://www.entomoljournal.com/archives/2020/vol8issue3/PartI/8-3-4-116.pdf

Adeoye BO, Oyagbemi AA, Asenuga ER, Omobowale TO, Adedapo AA. The ethanol leaf extract of Andrographis paniculata blunts acute renal failure in cisplatin-induced injury in rats through inhibition of kim-1 and upregulation of Nrf2 pathway. J. Basic Clin. Physiol. Pharmacol. 2018 Nov 30;30(2):205–17. doi:10.1515/jbcpp-2017-0120

Sukardiman, Suharjono, Balqianur T. The role of ethyl acetate fraction of Andrographis paniculata and doxorubicin combination toward the increase of apoptosis and decrease of VEGF protein expression of mice fibrosarcoma cells. Int. J. Pharm. Pharm. Sci. 2015Apr;7(4):347–50. doi:https://journals.innovareacademics.in/index.php/ijpps/article/view/4838.

Yuan H, Sun B, Gao F, Lan M. Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells. Pharm. Biol. (Abingdon, U. K.). 2016 May 9;54(11):2629–35. doi:10.1080/13880209.2016.1176056

Songvut P, Boonyarattanasoonthorn T, Nuengchamnong N, Junsai T, Kongratanapasert T, Supannapan K, et al. Enhancing oral bioavailability of andrographolide using solubilizing agents and bioenhancer: Comparative pharmacokinetics of andrographis paniculata formulations in Beagle Dogs. Pharm. Biol. (Abingdon, U. K.). 2024 Feb 13;62(1):183–94. doi:10.1080/13880209.2024.2311201

Huang M, Lu J-J, Ding J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021 Jan 3;11(1):5–13. doi:10.1007/s13659-020-00293-7

Bhattacharya S, Mandal SK, Akhtar MDS, Dastider D, Sarkar S, Bose S, et al. Phytochemicals in the treatment of arthritis: Current knowledge. Int. J. Curr. Pharm. Res. 2020 Jul 15;12(4):1–6. doi:10.22159/ijcpr.2020v12i4.39050

Kurniawan DW, AiniGNS, Arramel, Hartati, Novrial D, Tarwadi. Preparation, characterization, and toxicity study of Andrographis paniculata ethanol extract poly-lactic-co-glycolic acid (PLGA) nanoparticles in Raw 264.7 cells. Int. J. Appl. Pharm. 2024 Jul 7;16(4):78–83. doi:10.22159/ijap.2024v16i4.50798

Published

27-11-2024

How to Cite

DIAH, F. V. ., MAZFUFAH, N. F., AROZAL, W., LOUISA, M., WANANDI, S. I., ARUMUGAM, S., SREEDHAR, R., & WUYUNG, P. E. (2024). ADDITIVE CYTOTOXIC EFFECT OF CISPLATIN AND ANDROGRAPHIS PANICULATA EXTRACT THROUGH THE MODULATION OF APOPTOTIC MARKERS, CYCLIN-D AND VEGF EXPRESSIONS IN SKOV3 OVARIAN CANCER CELL LINE. International Journal of Applied Pharmaceutics, 17(1). https://doi.org/10.22159/ijap.2025v17i1.52654

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >>