AN EMERGING AQUATIC GREEN GOLD FOR FOOD AND MEDICINE: A REVIEW OF ALGAE FROM NORTH EAST INDIA

  • JINU MEDHI Department of Biotechnology, Gauhati University, Guwahati, Assam 781014, India
  • MOHAN CHANDRA KALITA Department of Biotechnology, Gauhati University, Guwahati, Assam 781014, India

Abstract

Given that proper nutrition is a growing concern for rising global populations, sustainable sources of nutritional value are in need. The food product or food derived from nutrients is called nutraceuticals which not only rarely supplement food but also make the treatment or prevention of a disorder and or disease. Algae are a diverse community of autotrophic organisms with the capable of fix atmospheric CO2, efficiently use light energy, ability to grow rapidly and compare to vascular plants, and algae produce more biomass per acre. More than two thousand years, algae are used for the treatment of different ailments and also used as a potential source of food. Due to the characteristics of rapid growth and capable of producing diverse nutritional compound, algae are largely used in dietary supplements and nutraceuticals field. Many kinds of algae have been reported several health benefits from improving the immune system to combat cancer and heart disease. With this background, this current review aims to evaluate the health-promoting effect of Chlorella, Haematococcus, Spirulina, Ankistrodesmus, Botryococcus and Scenedesmus in North East India.

Keywords: Algae, Autotrophic, Health benefits, Nutraceuticals, Nutritional components, North East India

Downloads

Download data is not yet available.

References

1. Nilesh Hemantkumar J, Ilza Rahimbhai M. Microalgae and its use in nutraceuticals and food supplements. In: Microalgae from physiology to application. IntechOpen; 2020.
2. Veluchamy C, Palaniswamy R. A review on marine algae and its applications. Asian J Pharm Clin Res 2020;13:21–7.
3. Bhattacharjee M. Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 2016;9:43–7.
4. Rayapu L, Makkar F, Chakraborty K, Valluru L. Phytochemical evaluation and antimicrobial activity of gracilaria opuntia: an important anti-diabetic red marine macroalgae. Int J Curr Pharm Res 2017;9:37.
5. Varfolomeev SD, Wasserman LA. Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol Springer 2011;47:789–807.
6. Brown EM, Allsopp PJ, Magee PJ, Gill CIR, Nitecki S, Strain CR, et al. Seaweed and human health. Nutr Rev Oxford University Press Oxford, UK 2014;72:205–16.
7. Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS. An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res Springer 2014;21:6.
8. Jena M, Adhikary SP. Chlorococcales (Chlorophyceae) of eastern and north-eastern states of India. Algae Inchon Citeseer 2007;22:167.
9. Baruah P, Kakati B. Water quality and phytoplankton diversity of gopeswar temple freshwater pond in Assam (India). Bangladesh J Bot 2013;41:181–5.
10. Sharma H, Das D, Sarmah P, Rout J. A study on freshwater algal communities of pond ecosystems from southern Assam. Vegetos 2019;32:19–32.
11. Ghosh A, Sarkar S, Gayen K, Bhowmick TK. Effects of carbon, nitrogen, and phosphorus supplements on growth and biochemical composition of Podohedriella sp. (MCC44) isolated from northeast India. Environ Prog Sustain Energy 2020;12:39.
12. Muthuraj M, Selvaraj B, Palabhanvi B, Kumar V, Das D. Enhanced lipid content in Chlorella sp. FC2 IITG via high energy irradiation mutagenesis. Korean J Chem Eng 2019;36:63–70.
13. Garcia JL, Vicente M de, Galan B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 2017;10:1017–24.
14. Wadmare N, Roy S, Kociolek JP, Karthick B. Two new aerophilic species of Stauroneis Ehrenberg (Bacillariophyta) from the Eastern Himalayas. Bot Lett Taylor Francis 2019;166:234–45.
15. Lahan JP, Kalita R, Bora SS, Barooah M. Screening of potential oleaginous microalgae from dhemaji district of Assam, India. Int J Agric Environ Biotechnol New Delhi Publishers 2012;5:141–4.
16. Lahan JP, Kalita R, Bora SS, Deka A, Boro RC, Barooah M. Isolation and identification of algae from dhemaji district of Assam, India. Trends Biosci 2012;5:220–1.
17. Jena M, Adhikary SP. Chlorococcales (Chlorophyceae) of Eastern and North-eastern States of India. ALGAE 2007;22:167–83.
18. Devgoswami CR, Kalita MC, Talukdar J, Bora R, Sharma P. Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. African J Biotechnol Academic Journals (Kenya) 2011;10:13128–38.
19. Goswami RCD, Kalita MC. Scenedesmus dimorphus and Scenedesmus quadricauda: two potent indigenous microalgae strains for biomass production and CO2 mitigation a study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source. J Algal Biomass Util 2011;2:2–4.
20. Deka SJ, Sarma GC. Preliminary checklist of oscillatoriaceae (Cyanophyta), Goalpara District, Assam, India. Int J Appl Biol Pharm Technol 2011;2:430–3.
21. Oinam G, Singh OA, Tiwari ON. Part II: an account of heterocystous nostocalean cyanobacterial biodiversity of Manipur, India. J Indian Bot Soc Indian Botanical Society 2011;90:45–59.
22. Devi TI, Tiwari ON. Exploration of oscillatorialean cyanobacteria of manipur, india, falling under indo-burma biodiversity hotspots. J Indian Bot Soc Indian Botanical Society 2011;90:33–44.
23. Maibam RS, Gupta A. Nutrient content in fresh water red algae (Lemaneaceae, Rhodophyta) from rivers of Manipur, north-east India. Electron J Environ Agric Food Chem 2011;10:2262–71.
24. Basu S, Roy AS, Mohanty K, Ghoshal AK. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol 2013;14:3369–77.
25. Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Bioresour Technol 2014;170:115–24.
26. Yasmin F, Buragohain BB, Sarma R. Aquatic Algae from Kaziranga National Park, Assam, India. Int J Curr Microbiol Appl Sci 2015;4:297–302.
27. Bora A, Gogoi HK, Veer V. Algal Wealth of Northeast India. In: Bioprospecting of Indigenous Bioresources of North-East India. Singapore: Springer Singapore; 2016. p. 215–28.
28. Thajamanbi M, Rout J, Thajuddin N. Blue green algae from rice fields of Karimganj district, Assam, North East India. Life 2016;50:23.
29. Ghosh A, Khanra S, Mondal M, Devi TI, Halder G, Tiwari ON, et al. Biochemical characterization of microalgae collected from north east region of India advancing towards the algae-based commercial production. Asia Pacific J Chem Eng 2017;12:745–54.
30. Sehgal A, Goswami K, Pal M, Chikkaputtaiah C, Chetia P, Boruah HPD. Morpho-taxonomic, genetic, and biochemical characterization of freshwater microalgae as potential biodiesel feedstock. 3 Biotech 2019;9:137.
31. Das B, Deka S. A cost-effective and environmentally sustainable process for phycoremediation of oil field formation water for its safe disposal and reuse. Sci Rep 2019;9:15232.
32. Manchanda T, Tyagi R, Sharma DK. Application of nutrient stress conditions for hydrocarbon and oil production by Botryococcus braunii. Biofuels Taylor Francis 2019;10:271–7.
33. Sarkar S, Manna MS, Bhowmick TK, Gayen K. Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochem 2020;96:58–72.
34. Dixit A, Kumar N, Kumar S, Trigun V. Antimicrobial resistance: progress in the decade since emergence of New Delhi metallo--lactamase in India. Indian J Community Med Publ Indian Assoc Prev Soc Med Wolters Kluwer 2019;44:4.
35. Astarita G, Langridge J. An emerging role for metabolomics in nutrition science. Lifestyle Genomics Karger Publishers 2013;6:181–200.
36. Baruah PP, Baruah R, Das P. A preliminary study on diversity and distribution of Spirulina, Arthrospira and Glaucospira (Cyanobacteria) in the Brahmaputra Valley of Assam (India). Feddes Repert Wiley Online Library 2014;125:85–92.
37. Bishop WM, Zubeck HM. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2012;2:1–6.
38. Huang C, Zhang Z, Cui W. Marine-derived natural compounds for the treatment of Parkinson’s disease. Mar Drugs Multidisciplinary Digital Publishing Institute 2019;17:221.
39. Bhattacharjee M. Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 2016;9:43.
40. Mathur M. Bioactive molecules of Spirulina: a food supplement. Bioact Mol Food Ref Ser Phytochem Springer, Cham; 2018.
41. Andrade LM, Andrade CJ, Dias M, Nascimento CAO, Mendes MA. Chlorella and Spirulina microalgae as sources of functional foods. Nutraceuticals Food Suppl 2018;6:45–58.
42. Sanzo G Di, Mehariya S, Martino M, Larocca V, Casella P, Chianese S, et al. Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from Haematococcus pluvialis microalgae. Mar Drugs Multidisciplinary Digital Publishing Institute 2018;16:334.
43. Ishaq AG, Matias Peralta HM, Basri H. Bioactive compounds from green microalga-Scenedesmus and its potential applications: a brief review. Pertanika J Trop Agric Sci 2016;39:1-16.
44. Ambati RR, Gogisetty D, Aswathnarayana Gokare R, Ravi S, Bikkina PN, Su Y, et al. Botryococcus as an alternative source of carotenoids and its possible applications an overview. Crit Rev Biotechnol Taylor Francis 2018;38:541–58.
45. Jerez Martel I, Garcia Poza S, Rodriguez Martel G, Rico M, Afonso Olivares C, Gómez Pinchetti JL. Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual 2017;201:71–8.
46. Richmond A, Hu Q. Handbook of microalgal culture: applied phycology and biotechnology. John Wiley and Sons; 2013.
47. Reyna Martinez R, Gomez Flores R, Lopez Chuken U, Quintanilla Licea R, Caballero Hernandez D, Rodreguez Padilla C, et al. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of nuevo leon State, Mexico. Peer J Peer J Inc; 2018. p. 6e4358.
48. Ryu NH, Lim Y, Park JE, Kim J, Kim JY, Kwon SW, et al. Impact of daily Chlorella consumption on serum lipid and carotenoid profiles in mildly hypercholesterolemic adults: a double-blinded, randomized, placebo-controlled study. Nutr J Springer 2014;13:57.
49. Medina Jaritz NB, Carmona Ugalde LF, Lopez Cedillo JC, Leon F SLR De. Antibacterial activity of methanolic extracts from Dunaliella salina and Chlorella vulgaris. Wiley Online Library; 2013.
50. Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, et al. Antioxidant and antibacterial activity of nutraceutical compounds from Chlorella vulgaris extracted in hydrothermal condition. Sep Sci Technol Taylor Francis 2009;44:1228–39.
51. Takyar MBT, Khajavi SH, Safari R. Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application in order to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. LWT Elsevier 2019;100:244–9.
52. Samarakoon KW, Ko JY, Shah MMR, Lee JH, Kang MC, Kwon ON, et al. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae Korean Soc Phycol 2013;28:111–9.
53. Sansawa H, Takahashi M, Tsuchikura S, Endo H. Effect of Chlorella and its fractions on blood pressure, cerebral stroke lesions, and life-span in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo) Center for Academic Publications Japan 2006;52:457–66.
54. Kwak JH, Baek SH, Woo Y, Han JK, Kim BG, Kim OY, et al. Beneficial immunostimulatory effect of short-term Chlorella supplementation: enhancement of natural killercell activity and early inflammatory response (Randomized, double-blinded, placebo-controlled trial). Nutr J Springer 2012;11:53.
55. Merchant RE, Carmack CA, Wise CM. Nutritional supplementation with Chlorella pyrenoidosa for patients with fibromyalgia syndrome: a pilot study. Phyther Res Wiley Online Library 2000;14:167–73.
56. Merchant RE, Andre CA. A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern Ther Health Med Innovision Communications 101 Columbia, Aliso Viejo, CA 92656 USA 2001;7:79–92.
57. Ghosh A, Khanra S, Mondal M, Devi TI, Halder G, Tiwari ON, et al. Biochemical characterization of microalgae collected from north east region of India advancing towards the algae based commercial production. Asia Pacific J Chem Eng Wiley Online Library 2017;12:745–54.
58. Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Bioresour Technol Elsevier 2014;170:115–24.
59. Muthuraj M, Kumar V, Palabhanvi B, Das D. Evaluation of indigenous microalgal isolate Chlorella sp. FC2 IITG as a cell factory for biodiesel production and scale up in outdoor conditions. J Ind Microbiol Biotechnol Springer 2014;41:499–511.
60. Kumar V, Muthuraj M, Palabhanvi B, Das D. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation. Bioresour Technol Elsevier 2016;200:770–9.
61. Palabhanvi B, Muthuraj M, Kumar V, Mukherjee M, Ahlawat S, Das D. Continuous cultivation of lipid rich microalga Chlorella sp. FC2 IITG for improved biodiesel productivity via control variable optimization and substrate driven pH control. Bioresour Technol Elsevier 2017;224:481–9.
62. Sarkar S, Manna MS, Bhowmick TK, Gayen K. Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochem Elsevier; 2020.
63. Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life 2020;10:19.
64. Fassett RG, Coombes JS. Astaxanthin in cardiovascular health and disease. Molecules Molecular Diversity Preservation International 2012;17:2030–48.
65. Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. TRENDS Biotechnol Elsevier 2003;21:210–6.
66. Dhankhar J, Kadian SS, Sharma A. Astaxanthin: a potential carotenoid. Int J Pharm Sci Res Citeseer 2012;3:1246.
67. Fakhri S, Yosifova Aneva I, Farzaei MH, Sobarzo Sanchez E. The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective. Molecules Multidisciplinary Digital Publishing Institute 2019;24:2640.
68. Uchiyama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. Astaxanthin protects-cells against glucose toxicity in diabetic db/db mice. Redox Rep Taylor Francis 2002;7:290–3.
69. Gurumayum S, Senapati SS. Exploration of algal varieties from panikhaiti area of guwahati using winogradsky column. Int J Curr Microbiol Appl Sci 2017;6:1195–204.
70. Ramanujam P, Siangbood H. Diversity of algal communities in Umiew River, Meghalaya. Indian Hydrobiol 2009;12:65–73.
71. Devi LB, Rout J. Diversity of soil algae from vegetable crop fields of Cachar district, Assam, India. Indian J Ecol Indian Ecological Society 2018;45:689–96.
72. M Bishop W, M Zubeck H. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2012;2:5.
73. Singh S, Marskolay S. Spirulina as an alternative solution to food security: an extensive review on clinical studies. J Crit Rev 2020;7:3411–31.
74. Nihal B, Gupta NV, Gowda DV MM. Formulation and development of topical anti acne formulation of Spirulina extract. Int J Appl Pharm 2018;10:229.
75. Capelli B, Cysewski GR. Potential health benefits of spirulina microalgae. Nutrafoods Springer 2010;9:19–26.
76. De M, Halder A, Chakraborty T, Das U, Paul S, De A, et al. Incidence of anemia and effect of nutritional supplementation on women in rural and tribal populations of eastern and north-eastern India. Hematol Taylor Francis 2011;16:190–2.
77. Ahsan M, Habib B, Parvin M, Huntington TC, Hasan MR. A review on culture, production and use of spirulina as food for humans and feeds for domestic animals. FAO Fish Aquac Circ FAO; 2008.
78. Yasmin F, Buragohain BB, Sarma R. Aquatic Algae from Kaziranga National Park, Assam, India. Int J Curr Microbiol Appl Sci 2015;4:297–302.
79. Talukdar J. Influences of dissolved inorganic carbon and nitrogen sources on growth, total lipid content and calorific value of freshwater oleaginous microalga Ankistrodesmus falcatus (Corda) ralfs. Environ Res Eng Manag 2012;61:14–25.
80. Kalita N, Baruah G, Goswami RCD, Talukdar J, Kalita MC. Ankistrodesmus falcatus: a promising candidate for lipid production, its biochemical analysis and strategies to enhance lipid productivity. J Microbiol Biotechnol Res 2011;1:148–57.
81. Basu S, Roy AS, Mohanty K, Ghoshal AK. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol Elsevier 2013;143:369–77.
Statistics
129 Views | 123 Downloads
Citations
How to Cite
MEDHI, J., and M. C. KALITA. “AN EMERGING AQUATIC GREEN GOLD FOR FOOD AND MEDICINE: A REVIEW OF ALGAE FROM NORTH EAST INDIA”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 12, no. 12, Dec. 2020, pp. 7-15, doi:10.22159/ijpps.2020v12i12.39739.
Section
Review Article(s)