PHARMACEUTICAL EQUIVALENCE OF METRONIDAZOLE TABLETS USING THE FLOW-THROUGH CELL (USP APPARATUS 4) AND MEDIA OF PHYSIOLOGICAL pH RANGE

Authors

  • YADIRA JIMENEZ-FLORES Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0002-4159-8403
  • MARCELA HURTADO Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0003-3546-5986
  • JOSE RAUL MEDINA-LOPEZ Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0002-4159-8403

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44759

Keywords:

Flow-through cell, Generic drug products, Metronidazole tablets, USP Apparatus 4

Abstract

Objective: The aim of this work was to evaluate the pharmaceutical equivalence of metronidazole tablets through the study of hydrodynamics of the flow-through cell (USP Apparatus 4) on the dissolution performance of four commercial formulations (500 mg). The results were compared with those found using the USP basket apparatus.

Methods: Experiments were performed with 0.1 N hydrochloric acid (pH 1.2), acetate buffer pH 4.5 and phosphate buffer pH 6.8. A USP Apparatus 4 was used with laminar flow at 16 ml/min and 22.6-mm cells. USP basket apparatus was used with 900 ml of each dissolution medium. The dissolution profiles were compared in terms of the mean dissolution time and dissolution efficiency.

Results: Significant differences in MDT and DE values of generic formulations vs. reference with both USP apparatuses were found (*P<0.05) hence, dissolution profiles of metronidazole generic formulations cannot be considered similar to the dissolution profile of the reference. After using some equations to explain the release performance of metronidazole, dissolution data were well adjusted to Peppas-Sahlin and logistic models when the flow-through cell was used.

Conclusion: The main problem found with the studied formulations was that generic drug products showed different dissolution performances than the reference, and they did not meet the biowaiver criteria for either class I or class III drugs; therefore, they cannot be considered therapeutic equivalents.

Downloads

Download data is not yet available.

References

Rediguieri CF, Porta V, Nunes DGS, Nunes TM, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Dressman J, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: metronidazole. J Pharm Sci. 2011 May;100(5):1618‒27.

Farmacopea de los Estados Unidos Mexicanos 11a Ed., 2014. Comisión Permanente de la Farmacopea de los Estados Unidos Mexicanos.

Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernäs H, Hussain AS, Junginger HE, Stavchansky SA, Midha KK, Shsh VP, Amidon GL. Molecular properties of the WHO essential drugs and provisional biopharmaceutical classification. Mol Pharmaceutics. 2004 Jan 12;1(1):85‒96.

Celebioglu A, Uyar T. Metronidazole/hydroxypropyl-β-Cyclodextrin inclusion complex nanofibrous webs as fast-dissolving oral drug delivery system. Int J Pharm. 2019 Dec 15;572:118828.

Food and Drug Administration. Guidance for industry: Waiver on in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system; 2017. Available from: https://collections.nlm.nih.gov/master/borndig/101720038/UCM070246.pdf. [Last accessed on 14 Apr 2022].

United States Pharmacopeia and National Formulary USP 44-NF 39; The United States Pharmacopeial Convention, Inc: Rockville MD; 2021.

Singh I, Aboul-Enein HY. Advantages of USP Apparatus IV (flow-through cell apparatus) in dissolution studies. J Iran Chem Soc. 2006;3:220–2.

Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, Toguchi H, Liversidge GG, Higaki K, Kimura T. In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol. J Controlled Release. 2008 Aug 25;130(1):29−37.

Jantratid E, De Maio V, Ronda E, Mattavelli V, Vertzoni M, Dressman JB. Application of biorelevant dissolution tests to the prediction of in vivo performance of diclofenac sodium from an oral modified-release pellet dosage form. Eur J Pharm Sci. 2009 Jun 28;37(3-4):434−41.

Namdev N. Formulation and evaluation of egg albumin based controlled release microspheres of metronidazole. Int J Curr Pharm Res. 2016;8(3):28−32.

Olorunsola EO, Adedokun MO, Akpabio EI. Evaluation of callinectes chitosan as a superdisintegrant in metronidazole tablet. Int J Pharm Pharm Sci. 2017;9(10):111−8.

Emara LH, Abdou AR, El-Ashmawy AA, Mursi NM. Preparation and evaluation of metronidazole sustained release floating tablets. Int J Pharm Pharm Sci. 2014;6(9):198−204.

COFEPRIS. Listado Actualizado de Medicamentos de Referencia 2021/01, Mexico. Available from: https:// https://www.gob.mx/cms/uploads/attachment/file/657152/LMR_2021_01_actualizacion_13_de_julio_de__2021.pdf. [Last accessed on 14 Apr 2022].

Tanigawara Y, Yamaoka K, Nakagawa T, Unzo T. New method for the evaluation of in vitro dissolution time and disintegration time. Chem Pharm Bull. 1982;30(3):1088−90.

Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001 May;13(2):123‒33.

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010 Sep;12(3):263‒71.

Langenbucher F, Benz D, Kürth W, Möller H, Otz M. Standardized flow-cell method as an alternative to existing pharmacopoeial dissolution testing. Pharm Ind. 1989;51(11):1276‒81.

Anderson NH, Bauer M, Bousaac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998 Aug;17(4-5):811−22.

Demirtürk E, Öner L. In vitro - in vivo correlations. FABAD J Pharm Sci. 2003;28:215‒24.

Cutler DJ, Beysacc E, Aiache JM. Level B and C in vitro/in vivo correlations: statistical considerations. Int J Pharm. 1997 Dec 8;158(2):185−93.

Adams E, Coomans D, Smeyers-Verbeke J, Massart DL. Non-linear mixed effects models for the evaluation of dissolution profiles. Int J Pharm. 2002 Jun 20;240(1-2):37‒53.

Gao Z. In vitro dissolution testing with flow-through method: a technical note. AAPS PharmSciTech. 2009 Dec;10(4):1401‒5.

Beyssac E, Lavigne J. Dissolution study of active pharmaceutical ingredients using the flow-through apparatus 4. Dissolution Technol. 2005 May;12(2):23‒5.

Fotaki N, Reppas C. The flow through cell methodology in the evaluation of intralumenal drug release characteristics. Dissolution Technol. 2005 May;12(2):17‒21.

Freeman CD, Klutman NE, Lamp KC. Metronidazole. A therapeutic review and update. Drugs. 1997 Nov;54(5):679‒708.

Boix A, Barrera MT. Sustitución y selección de equivalentes terapéuticos. Farmacia Hospitalaria. 1996;20:351‒8.

Idkaidek NM, Najib NM. Enhancement of oral absorption of metronidazole suspension in humans. Eur J Pharm Biopharm. 2000 Sep;50(2):213‒6.

Itiola OA, Pilpel N. Studies on the metronidazole tablet formulations. J Pharm Pharmacol. 1986 Feb;38(2):81‒6.

Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of Class I and II drugs. Pharm Res. 1998 May;15(5):698‒705.

Medina JR, Ortiz HD, Hurtado M, Domínguez-Ramírez AM. Influence of dose and the USP basket and flow-through cell dissolution apparatuses in the release kinetics of metronidazole immediate-release products. Int J Res Pharm Sci. 2014 Jun;5(2):137‒46.

Medina JR, Hernández J, Hurtado M. In vitro release studies of carbamazepine tablets and benzoyl metronidazole suspensions using the flow-through cell apparatus and simulated gastrointestinal fluids. Int J App Pharm. 2017 Jul;9(4):54‒60.

Published

28-05-2022

How to Cite

JIMENEZ-FLORES, Y., HURTADO, M., & MEDINA-LOPEZ, J. R. (2022). PHARMACEUTICAL EQUIVALENCE OF METRONIDAZOLE TABLETS USING THE FLOW-THROUGH CELL (USP APPARATUS 4) AND MEDIA OF PHYSIOLOGICAL pH RANGE. International Journal of Applied Pharmaceutics, 14(4). https://doi.org/10.22159/ijap.2022v14i4.44759

Issue

Section

Original Article(s)

Most read articles by the same author(s)