OVERVIEW OF PECTIN AS AN EXCIPIENT AND ITS USE IN THE PHARMACEUTICAL DOSAGE FORM

Authors

  • IYAN SOPYAN Department of Pharmacutics and Technology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia https://orcid.org/0000-0001-7616-5176
  • DOLIH GOZALI Department of Pharmacutics and Technology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
  • INSAN SUNAN K. S. Department of Pharmacutics and Technology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
  • RIZKA KHOIRUNNISA GUNTINA Department of Pharmacutics and Technology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia https://orcid.org/0000-0001-7616-5176

DOI:

https://doi.org/10.22159/ijap.2022v14i4.45091

Keywords:

pectin, composit pectin, drugs delivery system, dosage form

Abstract

Pectin is a polysaccharide that is abundant in nature and has promising uses in the pharmaceutical field. Pectin is resistant to digestive enzymes but pectin gel can swell in aqueous media and small amounts of compounds can be released into the gastrointestinal tract. This problem can be solved by developing pectin composites obtained from the incorporation of pectin polymers with other polymers. This article discusses the interaction of pectin with other polymers in various drug delivery systems. The method used in review articles is to review nationally and internationally published scientific journals obtained from Google, Google Scholar, Pubmed and Science Direct. From several related studies, delivery systems that have been developed and reported in the form of films, hydrogels, particulate systems and tablets. Other polymers such as Alginatee, protein, chitosan, gelatin and starch are known to improve the properties of pectin so that pectin composites can be used as a controlled drug delivery. Thus, the development of other drug delivery systems with pectin composites becomes an opportunity and challenge in the future.

Downloads

Download data is not yet available.

References

Udgil D. The interaction between insoluble and soluble fiber in dietary fiber for the prevention of cardiovascular disease: Fiber’s interaction between gut micoflora, sugar metabolism. Weight control and cardiovascular health. 2017:35–59. doi: 10.1016/B978-0-12-805130-6.00003-3.

Antony A. A review on pectin: chemistry due to general properties of pectin and its pharmaceutical uses. Sci. Rep. 2012;1:1–3. doi: 10.4172/scientificreports. 553.

Martău GA, Mihai M, and Vodnar DC. The use of chitosan, alginate, and pectin in the biomedical and food sector—biocompatibility, bioadhesiveness, and biodegradability, polymers 2019;11(11):1837. doi: 10.3390/polym11111837.

Meneguin AB, Cury BSF, and. Evangelista RC. Films from resistant starch-pectin dispersions intended for colonic drug delivery carbohydr. Polym. 2014;99:140–149. doi: 10.1016/j.carbpol.2013.07.077.

Jain D and Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research Drug Dev. Ind. Pharm. 2014;40(12):1576–1584. doi: 10.3109/03639045.2014.917657.

Elzoghby AO, El-Fotoh WSA, and Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J. Control. Release Off. J. Control. Release Soc. 2011;153(3):206–216. doi: 10.1016/j.jconrel.2011.02.010.

Cheung RCF, Ng TB, Wong JH, and Chan HW. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs. 2015;13(8):5156–5186. doi: 10.3390/md13085156.

Hanna DH and Saad GR. Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorganic Chem. 2019;84:115–124. doi: J10.1016/j.bioorg.2018.11.036.

Parker NG and Povey MJW. Ultrasonic study of the gelation of gelatin: Phase diagram, hysteresis and kinetics. Food Hydrocoll. 2012;26(1):99–107. doi: 10.1016/j.foodhyd.2011.04.016.

Yang J, Huang Y, Gao C, Liu M, and Zhang X. Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release. Colloids Surf. B Biointerfaces. 2014;115:368–376. doi: 10.1016/j.colsurfb.2013.12.007.

Lara-espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, and Rascón-Chu A. Pectin and pectin-based composite materials: beyond food texture. Mol. basel switz. 2018;23:4:E942. doi: 10.3390/molecules23040942.c

Palin R and Geitmann A. The role of pectin in plant morphogenesis. Biosystems. 2012;109(3):397–402. doi: 10.1016/j.biosystems.2012.04.006.

Kaya M, Sousa AG, Crépeau MJ, Sørensen SO, and Ralet MC. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Ann. Bot. 2014;114(6):1319–1326. doi: 10.1093/aob/mcu150.

Geerkens CH et al. Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food hydrocoll. 2015;51:241–251. doi: 10.1016/j.foodhyd.2015.05.022.

Yapo B and Koffi K. Extraction and characterization of highly gelling low methoxy pectin from cashew apple pomace. foods. 2013;3:1–12. doi: 10.3390/foods3010001.

Twinomuhwezi H, Awuchi C, and Kahunde D. Extraction and characterization of pectin from orange (Citrus sinensis), lemon (Citrus limon) and tangerine (Citrus tangerina). 2020;1:17–30.

Khamsucharit P, Laohaphatanalert K, Gavinlertvatana P, Sriroth K, and Sangseethong K. Characterization of pectin extracted from banana peels of different varieties. Food sci. biotechnol. 2017;27(3):623–629. doi: 10Xs10068-017-0302-0.

Ma S, Yu S, Zheng X, Wang X, Bao XD, and Guo X, Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr. polym. 2013 ;98(1):750–753. doi: 10.1016/j.carbpol.2013.06.042.

Yang JS, Mu TH, and Ma MM. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food chem. 2018;244:197–205. doi: 10.1016/j.foodchem.2017.10.059.

Begum R, Aziz M, Uddin MA, and Yusof YA. Characterization of Jackfruit (Artocarpus Heterophyllus) waste pectin as influenced by various extraction conditions. Agric. Agric. sci. procedia. 2014;2:244–251. doi: 10.1016/j.aaspro.2014.11.035.

Grassino AN, Brnčić M, Vikić-Topić D, Roca S, Dent M, and Brnčić SR. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food chem. 2016;198:93–100. doi: 10.1016/j.foodchem.2015.11.095.

Narasimman P and P S. An overview on the fundaental of pectin. Int. J. Adv. Res. 2016;4:1855–1860. doi: 10.21474/IJAR01/2593.

Giacomazza D, Bulone D, San Biagio PL, Marino R, and Lapasin R. The role of sucrose concentration in self-assembly kinetics of high methoxyl pectin. Int. J. Biol. Macromol. 2018; 112:183–1190. doi: 10.1016/j.ijbiomac.2018.02.103.

Zaid RM, Mishra P, Tabassum S, Wahid ZA, and Sakinah AMM. High methoxyl pectin extracts from Hylocereus polyrhizus’s peels: Extraction kinetics and thermodynamic studies. Int. J. Biol. Macromol. 2019:141:1147–1157. doi: 10.1016/j.ijbiomac.2019.09.017.

Han W et al. Mathematical model of Ca2+ concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin. Food hydrocoll. 2017;C(66):37–48. doi: 10.1016/j.foodhyd.2016.12.011.

Li Wan, Zhixuan Y, Ran C, Siyu P, Fengxia L, and Siyi P. Calcium-induced-gel properties for low methoxyl pectin in the presence of different sugar alcohols. Food Hydrocoll. 2021;112:106252. doi: 10.1016/j.foodhyd.2020.106252.

Kiaei Pour P, Alemzadeh I, Vaziri AS, and Beiroti A. Potential effects of alginate-pectin biocomposite on the release of folic acid and their physicochemical characteristics. J. Food Sci. Technol. 2020;57(9):3363–3370. doi: 10.1007/s13197-020-04369-7.

Galus S (Kokoszka) and Lenart A. Development and characterization of composite edible films based on sodium alginate and pectin, J. Food Eng. 2013.115:459–465. doi: 10.1016/j.jfoodeng.2012.03.006.

Seixas FL, Turbiani F, Salomao FG, Souza RP, and Gimenes ML. Biofilms composed of alginate and pectin: Effect of concentration of crosslinker and plasticizer agents. Chem. Eng. Trans. 2013;32:1693–1698. doi: 10.3303/CET1332283.

Hsu FY, Yu DS, and Huang CC. Development of pH-sensitive pectinate/alginate microspheres for colon drug delivery. J. Mater. Sci. Mater. Med. 2013:24(2):317–323. doi: 10.1007/s10856-012-4798-9.

Belščak A-Cvitanović et al. Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food hydrocoll. 2016;C(57):139–152. doi: 10.1016/j.foodhyd.2016.01.020.

Neufeld L and Bianco-Peled L. Pectin-chitosan physical hydrogels as potential drug delivery vehicles. Int. J. Biol. Macromol. 2017;101:852–861. doi: 10.1016/j.ijbiomac.2017.03.167.

Rampino A, Borgogna M, Bellich B, Blasi P, Virgilio F, and Cesàro A, Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. Eur. J. Pharm. Sci. 2016;84(37–45). doi: 10.1016/j.ejps.2016.01.004.

Nining N, Elfiyani R, and Wulandari E. Comparison eugenol and oleic acid as a plasticizer on characteristic of dextromethorphan hydrobromide film by solvent casting method, Pharm. Sci. Asia. 2021;48:139–146. doi: 10.29090/psa.2021.02.20.023.

Fahrurroji A, Thendriani D, and Riza H. Hesperidin hydrogel formulation using pectin-chitosan polymer combination. Int. J. Pharm. Pharm. Sci. 2017: 98–104. doi: 10.22159/ijpps.2017v9i12.19816.

Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, and Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;104:109873. doi: 10.1016/j.msec.2019.109873.

Puga AM, Lima AC, Mano JF, Concheiro A, and Alvarez-Lorenzo C. Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydr. Polym. 2013;98(1):331–340. doi: 10.1016/j.carbpol.2013.05.091.

Rajneet K, Kuldeep S, Bharti S, Tiwary AK, and Vikas R, Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength. Carbohydr. Polym. 2014;102:55–65. doi: 10.1016/j.carbpol.2013.11.005.

Pandey S, Mishra A, Raval P, Patel H, Gupta A, and Shah D. Chitosan–pectin polyelectrolyte complex as a carrier for colon targeted drug delivery. J. Young Pharm. JYP. 2013;5(4):160–166. doi: 10.1016/j.jyp.2013.11.002.

Cazorla-Luna R et al. Chitosan-Based Mucoadhesive Vaginal Tablets for Controlled Release of the Anti-HIV Drug Tenofovir. Pharmaceutics. 2019;11(1):E20. doi: 10.3390/pharmaceutics11010020.

Birch NP and Schiffman JD. Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir ACS J. Surf. Colloids. 2014;30(12) :3441–3447. doi: 10.1021/la500491c.

Chang C, Wang T, Hu Q, Zhou M, Xue J, and Luo L. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll. 2017;C(70):143–151. doi: 10.1016/j.foodhyd.2017.03.033.

Baracat MM, Nakagawa AM, Casagrande R, Georgetti SR, Verri WA, and de Freitas O. Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. AAPS PharmSciTech. 2012;13(2):364–372. doi: 10.1208/s12249-012-9752-0.

Wang T, Hu Q, Zhou M, Xia Y, Nieh MP, and Luo Y. Development of ‘All Natural’ Layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. Eur. J. Pharm. Biopharm. 2016;107. doi: 10.1016/j.ejpb.2016.07.022.

Silva DF, Favaro-Trindade CS, Rocha GA, and Thomazini M. Microencapsulation of lycopene by gelatin–pectin complex coacervation. J. Food Process. Preserv. 2012;36(2): 185–190. doi: 10.1111/j.1745-4549.2011.00575.x.

Tummalapalli M, Berthet M, Verrier B, Deopura BL, Alam MS, and Gupta B. Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing. Int. J. Pharm. 2016;505(1–2):234–245. doi: 10.1016/j.ijpharm.2016.04.007.

Carbinatto FM, de Castro AD, Evangelista RC, and Cury BSF. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J. Pharm. Sci. 2014;9(1):27–34. doi: 10.1016/j.ajps.2013.12.002.

Dafe A, Etemadi H, Dilmaghani A, and Mahdavinia GR. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int. J. Biol. Macromol. 2017;97:536–543. doi: 10.1016/j.ijbiomac.2017.01.060.

Liu Y. Starch-Pectin matrices for encapsulation of ascorbic acid. Diss. Theses Stud. Res. Food Sci. Technol., May 2014, [Online]. Available: https://digitalcommons.unl.edu/foodscidiss/41

Soares GA, de Castro Ad, Cury BSF, and Evangelista RC. Blends of cross-linked high amylose starch/pectin loaded with diclofenac. Carbohydr. Polym. 2013;91(1):135–142. doi: 10.1016/j.carbpol.2012.08.014.

Alborzi S, Lim LT, and Kakuda Y. Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under in vitro conditions. LWT - Food Sci. Technol. 2014;1(59):383–388. doi: 10.1016/j.lwt.2014.06.008.

Jindal M, Kumar V, Rana V, and Tiwary AK. An insight into the properties of aegle marmelos pectin-chitosan cross-linked films. Int. J. Biol. Macromol. 2012;52:77–84. doi: 10.1016/j.ijbiomac.2012.10.020.

Kowalonek J. Studies of chitosan/pectin complexes exposed to UV radiation. Int. J. Biol. Macromol. 2017:103:515–524. doi: 10.1016/j.ijbiomac.2017.05.081.

Recillas-Mota M, Silva L, Goycoolea F, Rinaudo M, San Roman J, and Argüelles-Monal W. Thermo-and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydr. Polym. 2011;86:1336–1343. doi: 10.1016/j.carbpol.2011.06.047.

Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, and Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Deliv. Rev. 2013;65(9):1148–1171. doi: 10.1016/j.addr.2013.04.016.

Li W et al. Pectin-chitosan complex: Preparation and application in colon-specific capsule. Int. J. Agric. Biol. Eng. 2105;8(4). doi: 10.25165/ijabe.v8i4.1512.

Wusigale L, Liang, and Luo Y. Casein and pectin: Structures, interactions, and applications, 2020. doi: 10.1016/j.tifs.2020.01.027.

Rodríguez Patino JM and Pilosof AMR. Protein-polysaccharide interactions at fluid interfaces. Food Hydrocoll. 2011;25(98):1925–1937.

Li X, Fang Y, Al-Assaf S, Phillips GO, and Jiang F. Complexation of bovine serum albumin and sugar beet pectin: stabilising oil-in-water emulsions. J. Colloid Interface Sci. 2012;88(1):103–111. doi: 10.1016/j.jcis.2012.08.018.

Huang S, Tu Z, Sha X, Wang H, Hu Y, and Hu Z. Gelling properties and interaction analysis of fish gelatin–low-methoxyl pectin system with different concentrations of Ca2+. LWT. 2020;132:109826. doi: 10.1016/j.lwt.2020.109826.

Shewan HM and Stokes JR. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J. Food Eng.2013;119(4):81–792. doi: 10.1016/j.jfoodeng.2013.06.046.

Farrés IF, Moakes RJA, and Norton IT. Designing biopolymer fluid gels: A microstructural approach. Food Hydrocoll. 2014;3(42):362–372. doi: 10.1016/j.foodhyd.2014.03.014.

Wu B and McClements DJ. Functional hydrogel microspheres: Parameters affecting electrostatic assembly of biopolymer particles fabricated from gelatin and pectin. Food Res. Int. 2015;Complete(72):231–240, 2015. doi: 10.1016/j.foodres.2015.02.028.

Gupta B, Tummalapalli B, Deopura BL, and Alam MS. Preparation and characterization of in-situ crosslinked pectin-gelatin hydrogels. Carbohydr. Polym. 2014;106:312–318. doi: 10.1016/j.carbpol.2014.02.019.

Menon RB. Lakshmi VS, Raju K, U AM, and Nair SC. Formulation and evaluation of lorazepam encapsulated colaagen/pectin buccal patch. Int. J. Appl. Pharm. 2019;11(5):200–209. doi: 10.22159/ijap.2019v11i5.34366.

Shalini B and Ruban Kumar A. Preparation and characterisation of gelatin blend pectin encapsulated hydroxyapatite (Ca10(OH)2(PO4)6) nanoparticles using precipitation method mater. Today Proc. 2019;8:245–249. doi: 10.1016/j.matpr.2019.02.107.

Gałkowska D, Długosz M, and Juszczak L. Effect of high methoxy pectin and sucrose on pasting, rheological, and textural properties of modified starch systems. Starch – Stärke. 2013 65(5–6):499–508. doi: 10.1002/star.201200148.

MaY-S, Pan Y, Xie X-T, Li X-M, Zhang B, and Chen HQ. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chem. 2019;274:319–323. doi: 10.1016/j.foodchem.2018.09.005.

Carbinatto FM, de Castro AD, Cury BSF, Magalhães A, and Evangelista RC. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int. J. Pharm.2012;423(2):281–288. doi: 10.1016/j.ijpharm.2011.11.042.

Rezvanian M, Ahmad N, Mohd Amin MCI, and Ng SF. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 2017;97:31–140. doi: 10.1016/j.ijbiomac.2016.12.079.

Islan GA, De Verti IP, Marchetti SG, and Castro GR. Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility. Appl. Biochem. Biotechnol. 2012;167(5)1408–1420. doi: 10.1007/s12010-012-9610-2.

Sopyan I, Wahyuningrum R, and Insan SKS. An experimental design in the optimatization various tablet excipient formulation = A concise review. Int. J. Appl. Pharm. 2022;14(1):28–32. doi: 10.22159/ijap.2022v14i1.43380.

Published

28-05-2022

How to Cite

SOPYAN, I., GOZALI, D., K. S., I. S., & GUNTINA, R. K. (2022). OVERVIEW OF PECTIN AS AN EXCIPIENT AND ITS USE IN THE PHARMACEUTICAL DOSAGE FORM. International Journal of Applied Pharmaceutics, 14(4). https://doi.org/10.22159/ijap.2022v14i4.45091

Issue

Section

Review Article(s)

Most read articles by the same author(s)

1 2 3 > >>