CHITOSAN NANOPARTICLES MEDIATED DELIVERY MIR-106B-5P ON BREAST CANCER CELL LINE MCF-7 AND T47D

  • Leonny Dwi Rizkita Universitas Gadjah Mada
  • YSRAFIL YSRAFIL
  • RONNY MARTIEN Universitas Gadjah Mada
  • INDWIANI ASTUTI

Abstract

The development of nanomedicine for gene therapy in the past decade has widely gained interest such as miRNA transfection to cancer cells. Unfortunately, due to its nature character, miRNA is easy to decay by cellular enzymatic process and requires a carrier. As cationic biopolymer, chitosan is widely known as non-viral vector. However, the study of chitosan as miRNA delivery system remains small in number. We purposely to investigate the miRNA loaded chitosan nanoparticles to breast cancer cell lines. To obtain the nanocomplex, we formulate chitosan-antimiR-106b-5p using natrium tripolyphosphate (Na. TPP) through ionic gelation method. We characterized the nanochitosan formula by using gel electrophoresis, nanoquant for encapsulation of entrapment quantification, morphology appearance as viewed by Scanning Electron Microscope (SEM), nanochitosan size analysis; in vitro analysis using MCF-7 and T47D breast cancer cell lines; in-silico prediction of possible gene target; PCR analysis and gel electrophoresis for E2F1/GAPDH expression. We found efficiency entrapment value as respectively 96.7%, particle size analysis 458 ± 11.79 PI 0.65 ± 0.07, spherical morphology as viewed in SEM. No significant difference between the nanochitosan supplemented group and the control group in MCF-7 cells (p=0,067). However, the ratio of E2F1 to GAPDH was significantly lower than the control group after nanochitosan antimiR-106b-5p loaded at concentration 140 nanoMolar (p=0,022) and 35 nanoMolar (p=0,016). Our nanochitosan formula is non-toxic to use in MCF-7 cell line. As the formula was conjugated to synthetic antimiR-106b-5p, the E2F1 expression decreased.

Keywords: chitosan, nanoparticle, miR-106b-5p, breast cancer, E2F1

References

1. Kaban K, Salva E, Akbuga J. In Vitro Dose Studies on Chitosan Nanoplexes for microRNA Delivery in Breast Cancer Cells. Nucleic Acid Ther. 2017;27(1):45–55.
2. Sabit H, Cevik E, Tombuloglu H, Farag K, Said OAM, Shaimaa E, et al. miRNA Profiling in MCF-7 Breast Cancer Cells?: Seeking a New Biomarker. J Biomed Sci. 2019;8(23):1–9.
3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
4. American Cancer Society. Global Cancer Facts & Figures 4th Edition. 2018; Atlanta : American Cancer Society.
5. World Health Organization. Breast cancer [Internet]. 2018 [cited 2020 Aug 26]. Available from: https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/
6. Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;(November 2018):1–16.
7. Nigussie Mekuria A, Degaga Abdi A, Mishore KM. MicroRNAs as a Potential Target for Cancer Therapy. J Cancer Sci Ther. 2018;10(06):152–61.
8. Ahmad, J. Hasnain S.E, Siddiqui M. S, Ahamed M, Musarrat J, Al-Khedhairy A. A. MicroRNA in carcinogenesis & cancer diagnostics: A new paradigm. Indian J Med Res [Internet]. 2013;137(4):680–94.
9. Peng B, Chen Y, Leong KW. MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev [Internet]. 2015;88:108–22.
10. Karimi M, Avci P, Ahi M, Gazori T, Hamblin MR, Naderi-Manesh H. Evaluation of Chitosan-Tripolyphosphate Nanoparticles as a p- shRNA Delivery Vector: Formulation, Optimization and Cellular Uptake Study. J Nanopharmaceutical Drug Deliv. 2013;1(3):1–28.
11. Arya G, Mankamna Kumari R, Sharma N, Gupta N, Chandra R, Nimesh S. Polymeric nanocarriers for site-specific gene therapy. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems. 2018. p. 689–714.
12. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release [Internet]. 2015;200:138–57.
13. Flühmann B, Ntai I, Borchard G, Simoens S, Mühlebach S. Nanomedicines: The magic bullets reaching their target? Eur J Pharm Sci [Internet]. 2019;128(October 2018):73–80.
14. Cao Y, Tan YF, Wong YS, Liew MWJ, Venkatraman S. Recent advances in chitosan-based carriers for gene delivery. Mar Drugs. 2019;17(6).
15. Martien R, K Irianto ID, Farida V, Purwita Sari D, Farmasi Universitas Gadjah Mada F, Studi Rekayasa Biomedis M, et al. Perkembangan Teknologi Nanopartikel Sebagai Sistem Penghantaran Obat Technology Developments Nanoparticles As Drug Delivery Systems. Maj Farm [Internet]. 2012;8(1):133–44.
16. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology [Internet]. 2018;16(1):1–33.
17. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190(April):64–83.
18. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol Med [Internet]. 2015;21(4):223–32.
19. Aftab S, Shah A, Nadhman A, Kurbanoglu S, Ays?l Ozkan S, Dionysiou DD, et al. Nanomedicine: An effective tool in cancer therapy. Int J Pharm. 2018;540(1–2):132–49.
20. Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim Biophys Acta - Biomembr. 2001;1514(1):51–64.
21. Rodriguez A, del A, Angeles M. Non-Viral Delivery Systems in Gene Therapy. Gene Ther - Tools Potential Appl. 2013;3–34.
22. Santos-Carballal B, Aaldering LJ, Ritzefeld M, Pereira S, Sewald N. Physicochemical and biological characterization of chitosan- microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Nat Publ Gr [Internet]. 2015;(July):1–15.
23. Naskar S, Koutsu K, Sharma S. Chitosan-based nanoparticles as drug delivery systems?: A review on two decades of research. J Drug Target [Internet]. 2018;
24. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017;9(53):1–26.
25. Ding Y, Shen SZ, Sun H, Sun K, Liu F, Qi Y, et al. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng C [Internet]. 2015;48:487–98.
26. Denizli M, Aslan B, Mangala LS, Jiang D, Rodriguez-aguayo C, Lopez-berestein G, et al. Chitosan Nanoparticles for miRNA Delivery. In: RNA Nanostructures: Methods and Protocols, Methods in Molecular Biology,. 2017. p. 219–30.
27. Ysrafil Y, Astuti I, Anwar LS, Martien R, Sumadi FAN, Wardhana T, et al. MicroRNA-155-5p Diminishes in Vitro Ovarian Cancer Cell Viability by Targeting HIF1? Expression. Adv Pharm Bull. 2020;10(4):630–7.
28. Rahiemna A., Megafitrah M, Ramadhani P, Mustikawaty A., Martien R. Formulasi nanopartikel kitosan-PGV- Dengan Metode Ionic Gelasi. J Saintifika Gadjah Mada [Internet]. 2011;3(2011):17–22.
29. Adhyatmika A, Martien R, Ismail H. Preparasi Nanopartikel Senyawa Pentagamavunon-0 Menggunakan Matriks Polimer Kitosan Rantai Sedang dan Pengait Silang Natrium Tripolifosfat Melalui Mekanisme Gelasi Ionik Sebagai Kandidat Obat Antiinflamasi. Maj Farm. 2018;13(2):65.
30. Nguyen MA, Wyatt H, Susser L, Geoffrion M, Rasheed A, Duchez AC, et al. Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo. ACS Nano. 2019;13(6):6491–505.
31. Ragelle H, Vanvarenberg K, Vandermeulen G, Preat V. Chitosan Nanoparticles for SiRNA Delivery In Vitro. In: Methods in molecular biology (Clifton, NJ). 2016. p. 143-150.
32. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115(2):216–25.
33. Villegas-Peralta Y, López-Cervantes J, Madera Santana TJ, Sánchez-Duarte RG, Sánchez-Machado DI, Martínez-Macías M del R, et al. Impact of the molecular weight on the size of chitosan nanoparticles: characterization and its solid-state application. Polym Bull [Internet]. 2020;(0123456789).
34. Yang HC, Hon MH. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem J [Internet]. 2009;92(1):87–91.
35. Katas H, Raja MAG, Lam KL. Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. Int J Biomater. 2013;2013.
36. Morris GA, Castile J, Smith A, Adams GG, Harding SE. The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)-chitosan nanoparticles. Carbohydr Polym [Internet]. 2011;84(4):1430–4.
37. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev [Internet]. 2010;62(1):3–11.
38. Stender JD, Frasor J, Komm B, Chang KCN, Kraus WL, Katzenellenbogen BS. Estrogen-regulated gene networks in human breast cancer cells: Involvement of E2F1 in the regulation of cell proliferation. Mol Endocrinol. 2007;21(9):2112–23.
39. Laine A, Westermarck J. Molecular Pathways?: Harnessing E2F1 Regulation for Prosenescence Therapy in p53-Defective Cancer Cells. Clin Cancer Res. 2014;20(14):3644–51.
40. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. E2F1-Regulated MicroRNAs Impair TGF?-Dependent Cell-Cycle Arrest and Apoptosis in Gastric Cancer. Cancer Cell. 2008;13(3):272–86.
41. Denechaud PD, Fajas L, Giralt A. E2F1, a novel regulator of metabolism. Front Endocrinol (Lausanne). 2017;8(NOV):1–8.
42. Wei CY, Tan QX, Zhu X, Qin QH, Zhu FB, Mo QG, et al. Expression of CDKN1A/p21 and TGFBR2 in breast cancer and their prognostic significance. Int J Clin Exp Pathol. 2015;8(11):14619–29.
43. Louie MC, McClellan A, Siewit C, Kawabata L. Estrogen receptor regulates E2F1 expression to mediate tamoxifen resistance. Mol Cancer Res. 2010;8(3):343–52.
Statistics
7 Views | Downloads
How to Cite
Rizkita, L. D., YSRAFIL, Y., MARTIEN, R., & ASTUTI, I. (2020). CHITOSAN NANOPARTICLES MEDIATED DELIVERY MIR-106B-5P ON BREAST CANCER CELL LINE MCF-7 AND T47D. International Journal of Applied Pharmaceutics, 13(1). Retrieved from https://innovareacademics.in/journals/index.php/ijap/article/view/39749
Section
Original Article(s)