CHITOSAN NANOPARTICLE AS A DELIVERY SYSTEM FOR POLYPHENOLS FROM MENIRAN EXTRACT (PHYLLANTHUS NIRURI L.): FORMULATION, OPTIMIZATION, AND IMMUNOMODULATORY ACTIVITY

  • GALIH PRATIWI Department of Pharmacy, STIKES Aisyiyah Palembang, Sumatera Selatan, Indonesia
  • RONNY MARTIEN Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, D. I. Yogyakarta, Indonesia, http://orcid.org/0000-0001-7291-6497
  • RETNO MURWANTI Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, D. I. Yogyakarta, Indonesia

Abstract

Objective: This study aims to formulate meniran extract into polymeric nanoparticles. Better stability of active substances in formulas compared to unformulated extracts is expected to increase immunomodulatory activity.


Methods: Nanoparticles were formulated using ionic gelation method with chitosan and tripolyphosphate polymers. Optimize the mixture of nanoparticles using simplex lattice design (SLD) with the help of Design-Expert (DX) software. Evaluation of particle size and potential zeta using dynamic light scattering (DLS). Interactions between components were analyzed using Fourier transform infrared spectrophotometry-attenuated total reflectance (FTIR-ATR) and morphology of the lyophilization results observed using scanning electron microscopy (SEM). Immunomodulatory tests using the latex assay method. The parameters tested included phagocytosis index, phagocytic activity, and nitric oxide secretion.


Results: The optimum mixture of the formulation process was obtained in the composition of chitosan 0.270 %, extract 0.626 %, and tripolyphosphate 0.074 % with desirability value of 0.841. Optimal response with particle size 434.7±3.90 d. nm, polydispersity index 0.285±0.03 and entrapment efficiency 62.98±0.65 %. The zeta potential value in the optimum formula is 11.9±0.1 mV with a positive charge. Phagocytosis index and phagocytic activity of nanoparticles differed significantly (p<0.05) compared with unformulated extracts.


Conclusion: Meniran extract was successfully formulated into polymeric nanoparticles using chitosan-tripolyphosphate polymer. The developed nanoparticles have the immunomodulatory activity that is better than unformulated extract.

Keywords: Phyllanthus niruri L., polyphenols, Chitosan nanoparticles, Immunomodulatory, Phagocytosis

References

1. Tjandrawinata RR, Susanto LW, Nofiarny D. The use of Phyllanthus niruri L. as an immunomodulator for the treatment of infectious diseases in clinical settings. Asian Pac J Trop Dis 2017;7:132-40.
2. Nworu CS, Akah PA, Okoye FBC, Esimone CO. Aqueous extract of Phyllanthus niruri (Euphorbiaceae) enhances the phenotypic and functional maturation of bone marrow-derived dendritic cells and their antigen-presentation function. Immuno-pharmacol Immunotoxicol 2010;32:393-401.
3. Nworu CS, Akah PA, Okoye FBC, Proksch P, Esimone CO. The effects of Phyllanthus niruri aqueous extract on the activation of murine lymphocytes and bone marrow-derived macrophages. Immunol Invest 2010;39:245-67.
4. Kumar S, Sharma S, Kumar D, Kumar K, Arya R. Immunostimulant activity of Phyllanthus reticulatus poir: a useful plant for infectious tropical diseases. Asian Pac J Trop Dis 2014;4:S491-5.
5. Shiyan S, Herlina H, Rizkika Sari L. Nephroprotective of anthocyanin pigments extract from red cabbage (Brassica oleracea L. Var. Capitata f. Rubra) against gentamicin-captopril-induced nephrotoxicity in rats. Asian J Pharm Clin Res 2018;11:432-6.
6. Shiyan S, Herlina H, Bella M, Amriani A. Antiobesity and anti-hypercholesterolemic effects of white tea (Camellia sinensis) infusion on high-fat diet induced obese rats. Pharmaciana 2017;7:278-88.
7. Mustarichie R, Priambodo D. Tablet formulation from meniran (Phyllanthus niruri L.) extract with a direct compression method. Int J Appl Pharm 2018;10:98-102.
8. Ilangkovan M, Jantan I, Mesaik MA, Bukhari SNA. Immunosuppressive effects of the standardized extract of Phyllanthus amarus on cellular immune responses in wistar-kyoto rats. Drug Des Devel Ther 2015;9:4917-30.
9. Afolayan FID, Erinwusi B, Oyeyemi OT. Immunomodulatory activity of curcumin-entrapped poly d,l-lactic-co-glycolic acid nanoparticles in mice. Integr Med Res 2018;7:168-75.
10. Putri DU, Rintiswati N, Soesatyo MH, Haryana SM. Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient-in vitro study. Nat Prod Res 2018;32:463-7.
11. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B 2010;80:184-92.
12. Kumari DR, Kotecha DM. A review on the standardization of herbal medicines. Int J Pharma Sci Res 2016;7:10.
13. Rasheed A, Reddy SB, Roja C. A review on standardization of herbal formulation. Int J Phytother 2012;2:74-88.
14. Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol 2016;56:21-38.
15. Saikia C, Gogoi P, Maji TK. Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet Med 2015;S4:1-10.
16. Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, et al. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 2015;6:104-42.
17. Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 2010;58:1423-30.
18. Sawtarie N, Cai Y, Lapitsky Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids Surf B 2017;157:110-7.
19. Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR. Parameters influencing the size of chitosan-TPP nano-and microparticles. Sci Rep 2018;8:1-11.
20. Al-Nemrawi NK, Alsharif SSM, Dave RH. Preparation of chitosan-TPP nanoparticles: the influence of chitosan polymeric properties and formulation variables. Int J Appl Pharm 2018;10:60-5.
21. Anju K, Jegadeeshwari AL, Gandhi NN. Optimization of green synthesized silver nanoparticles from Caralluma umbellate. Int J Appl Pharm 2018;10:103-10.
22. Martien R, Loretz B, Schnürch AB. Oral gene delivery: design of polymeric carrier systems shielding toward intestinal enzymatic attack. Biopolymers 2006;83:327-36.
23. Chabib L, Martien R, Ismail H. Formulation of nanocurcumin using low viscosity chitosan polymer and its cellular uptake study into T47D cells. Indones J Pharm 2012;23:27-35.
24. Hirlekar SDS, Bhairy S, Bhairy S, Hirlekar R, Hirlekar R. Preparation and characterization of oral nanosuspension loaded with curcumin. Int J Pharm Pharm Sci 2018;10:90–5.
25. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complimentary colorimetric methods. J Food Drug Anal 2002;10:178-82.
26. Shiyan S, Hertiani T, Martien R, Nugroho AK. Optimization of a novel kinetic-assisted infundation for rich-EGCG and polyphenols of white tea (Camellia sinensis) using central composite design. Int J Appl Pharm 2018;10:259-67.
27. Nurrochmad A, Ikawati M, Sari IP, Murwanti R, Nugroho AE. Immunomodulatory effects of ethanolic extract of Thyphonium flagelliforme (Lodd) Blume in rats induced by cyclophosphamide. J Evid-Based Complement Altern Med 2015;20:167-72.
28. Kulig D, Zimoch Korzycka A, Król ?, Oziemb?owski M, Jarmoluk A, Kulig D, et al. Effect of film-forming alginate/chitosan polyelectrolyte complex on the storage quality of pork. Molecules 2017;22:98.
29. Venkatesan J, Bhatnagar I, Kim SK. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 2014;12:300-16.
30. Tsai ML, Chen RH, Bai SW, Chen WY. Storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohydr Polym 2011;84:756-61.
31. Parmar N, Singla N, Amin S, Kohli K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B 2011;86:327-38.
32. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems–a review (Part 2). Trop J Pharm Res 2013;12:265-73.
33. Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol 2015;72:640-8.
34. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B 2012;90:21-7.
35. Bilia AR, Isacchi B, Righeschi C, Guccione C, Bergonzi MC. Flavonoids loaded in nanocarriers: an opportunity to increase oral bioavailability and bioefficacy. Food Nutr Sci 2014;05:1212-327.
36. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005;81:243S-255S.
37. Thapa RK, Khan GM, Parajuli-Baral K, Thapa P. Herbal medicine incorporated nanoparticles: advancements in herbal treatment. Asian J Biomed Pharm Sci 2013;3:7-14.
38. Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908:in vitro characterisation and in vivo evaluation. J Controlled Release 2001;70:353-63.
39. Aluani D, Tzankova V, Kondeva Burdina M, Yordanov Y, Nikolova E, Odzhakov F, et al. ?valuation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 2017;103:771-82.
40. Konecsni K, Low NH, Nickerson MT. Chitosan–tripolyphosphate submicron particles as the carrier of entrapped rutin. Food Chem 2012;134:1775-9.
41. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017;9:53-79.
Statistics
46 Views | 33 Downloads
How to Cite
PRATIWI, G., MARTIEN, R., & MURWANTI, R. (2019). CHITOSAN NANOPARTICLE AS A DELIVERY SYSTEM FOR POLYPHENOLS FROM MENIRAN EXTRACT (PHYLLANTHUS NIRURI L.): FORMULATION, OPTIMIZATION, AND IMMUNOMODULATORY ACTIVITY. International Journal of Applied Pharmaceutics, 11(2), 50-58. https://doi.org/10.22159/ijap.2019v11i2.29999
Section
Original Article(s)