OPTIMIZING FORMULATION OF MINI TABLETS FLOATING RANITIDINE HCL USING FULLY PREGELATINIZED STARCH (MANIHOT ESCULENTA CRANTZ) WITH SIMPLEX LATTICE DESIGN

  • I Gusti Ngurah Agung Dewantara Putra Department of Pharmacy, Faculty of Mathematics and Natural Science, Udayana University, Bali, Indonesia.
  • RETNO MURWANTI Departement of Pharmaceutical Biology, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
  • ABDUL ROHMAN Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
  • T.N SAIFULLAH SULAIMAN Departement of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia

Abstract

Objective: The main objective of this study was to optimize the noneffervescent floating mini tablets (NEFT) formula of ranitidine hydrochloride (ranitidine HCl) using the simplex lattice design (SLD) with parameters, granule flow rate, hardness, friability, floating lag time and ranitidine HCl dissolution test (%).


Methods: The material was prepared using the SLD model was cassava starch fully pregelatinized (CSFP), hydroxypropyl methylcellulose K4M (HPMC K4M), and magnesium stearate. The formula obtained was tested for critical parameters, namely flow rate, hardness, friability, floating lag time and ranitidine HCl dissolution test (%). The dissolution test was carried out by using the USP type II method (paddle method). The beaker is immersed in the water bath of temperature 37 °C. It is filled with 900 ml of 0.1 N HCl, and the apparatus was set at 75 rpm. The samples were taken in the interval of 10 min and estimated content by a spectrophotometer at 312 nm.


Results: The optimum formula based on superimposed graphs of various contour plots with SLD. From the experimental data for all test parameters, the experimental results are approaching with the results of the prediction. The condition for optimum functional components in NEFT was 80 mg for CSFP, HPMC K4M 30 mg, and 10 mg magnesium stearate to obtain a yield of 7.85 kg hardness, 0.34 % friability, 15.27 floating lag time and 91.31 % ranitidine HCl dissolved.


Conclusion: It can be concluded that the optimum formula using the Design-Expert® program the SLD concept is obtained in the range of 70-80 mg CSFP, 30-40 mg HPMC K4M, 0-10 mg magnesium stearate.

Keywords: Cassava starch fully pregelatinized, Noneffervescent, Floating mini tablets, Optimization, Simplex lattice design

References

1. Adedokun MO, Itiola OA. Disintegrant activities of natural and pregelatinized trifoliate yams, rice and corn starches in paracetamol tablets. J Appl Pharm Sci 2011;1:200-6.
2. Carstensen JT, Chan PC. Flow rate and angle of repose wet processed granulations. J Pharm Sci 1997;66:1238-5.
3. Olowosulu AK, Oyi A, Isah AB, Ibrahim MA. Formulation and evaluation of novel co-processed excipients of maize starch and acacia gum (StarAc) for direct compression tableting. Int J Pharm Res Innov 2011;2:39-45.
4. Qazi IM, Rakshit SK, Tran T, Ullah J, Khan Z. Effect of blending selected tropical starches on pasting properties of rice flour. Sarhad J Agric 2014;30:357-68.
5. Shastri DH, Patel LD, Parikh RK. Studies on in situ hydrogel: a smart way for safe and sustained ocular drug delivery. J Young Pharm 2010;2:116-20.
6. Achor M, Oyeniyi J, Musa M, Gwarzo M. Physicochemical properties of cassava starch retrograded in alcohol. J Appl Pharm Sci 2015;5:126-31.
7. Abdorreza MN, Robal M, Cheng LH, Tajul AY, Karim AA. Physicochemical, thermal, and rheological properties of acid-hydrolyzed sago (Metroxylon sagu) starch. Food Sci Technol 2012;46:135-41.
8. Parwiyanti FP, Wijaya A, Malahayati N, Lidiasari E. Swelling power dan kelarutan pati ganyong (canna edulis, kerr.) termodifikasi melalui heat-moisture treatment dan penambahan gum xantan untuk produk roti; 2015. p. 692-9.
9. Patel VF, Patel NM. Intragastric floating drug delivery system of cefuroxime axetil: in vitro evaluation. AAPS PharmSciTech 2006;7:E118-E124.
10. Alhamdany AT, Abbas AK. Formulation and in vitro evaluation of amlodipine gastroretentive floating tablets using a combination of hydrophilic and hydrophobic polymers. Int J Appl Pharm 2018;10:119-25.
11. Cahyana A, Marzuki A. Analisa SEM (Scanning Electron Microscope) Pada Kaca TZN yang dikristalkan sebagian. Jur. Ilmu Fis. Pasca Sarj. Univ. Sebel. Maret 23; 2014.
12. Ansel. Pharmaceutical dosage form and drug delivery systems. Ninth. ed. University of Georgia; 2011.
13. Anwar E, Yusmarlina D, Rahmat H. Phosphorylation of pregelatinized maranta starch (Maranta arundinaceae L.) as theophylline tablet matrix controlled release. Indonesia J Pharm 2006;17:37-44.
14. Bahram HR, Hassan Beygi SR, Kianmehr MH, Valaei I, Mazraeh HM. The effect of moisture content, particle size and consolidation stress on flow properties of vermicompost. Agric Eng Int CIGR J 2014;247-52.
15. Bestari AN, Hidayatullah R, Sulaiman TNS. Pembuatan amilum sagu (Metroxylon sagu, Rottb.) pregelatin dan material komposit sebagai filler-binder sediaan tablet; 2016.
16. Bhardwaj TR, Kanwar M, Lal R, Gupta A. Natural gums and modified gums as sustained-release carriers. Drug Dev Ind Pharm 2000;26:1025-38.
17. Dewantara Putra, I Gusti Ngurah Agung. Physical and chemical properties of native and fully pregelatinized cassava starch (Manihot esculenta Crantz). Indonesian Journal of Pharmacy 2018;29:145-56.
18. Dreu R, Toschkoff G, Funke A, Altmeyer A, Knop K, Khinast J, Kleinebudde P. Evaluation of the tablets’ surface flow velocities in pan coaters. Eur J Pharm Biopharm 2016;106:97-106.
19. El Mallawany R, Abdallah MD, Ahmed IA. New tellurite glass: optical properties. J Material Chem Physics 2008;109:291-6.
20. Emami J, Tavakoli N. Formulation of sustained-release lithium carbonate matrix tablets: influent of hydrophilic material on the release rate and in vitro-in vivo evaluation. Int J Pharm Pharm Sci 2004;15:338-44.
21. Gusnimar A. Teknik analisis kadar amilosa dalam beras. Bul Tek Pertan; 2003. p. 82-4.
22. Hadi MA, Raghavendra RNG, Srinivasa RA. Formulation and evaluation of ileo-colonic targeted matrix-mini-tablets of naproxen for chronotherapeutic treatment of rheumatoid arthritis. Saudi Pharm J 2016;24:64-73.
23. Hastuti M. Pengaruh perbedaan suhu dalam metode pembuatan amilum singkong pregelatinasi terhadap sifat fisik tablet chlorpheniramine maleate secara kempa langsung. Universitas Muhammadiyah Surakarta; 2009.
24. Horwitz W. AOAC International (Eds.). Official methods of analysis of AOAC International. 18 ed. current through rev. 1 ed. AOAC International. Gaithersburg Md; 2006.
25. Indonesian Pharmacopeia. V. ed. Indonesia; 2014.
26. Juliano BO. A simplified assay for milded rice amylose. Cereal Sci Today 1971;16:334-60.
27. Kemp SE, Hollywood T, Hort J. Sensory evaluation: a practical handbook. Ames, Iowa: Wiley-Blackwell, Chichester, U. K.; 2009.
28. Kim S, Limpongsa E, Jaipakdee N. Effects of formulation parameters on properties of gastric floating tablets containing poorly soluble drug: diclofenac sodium. Int J Appl Pharm 2018;10:152-60.
29. Niharika MG, Krishnamoorthy K, Akkala M. Overview on floating drug delivery system. Int J Appl Pharm 2018;3:65-71.
30. NMP, SSC, SV, CPA, Ras N. Formulation and evaluation of simvastatin gastroretentive drug delivery system. Int J Appl Pharm 2017;9:55-60.
31. Octavia MD, Halim A, Indriyani R. Pengaruh besar ukuran partikel terhadap sifat–sifat tablet metronidazol; 2017.
32. Onyango C, Mewa EA, Mutahi AW, dan Okoth MW. Effect of heat-moisture-treated cassava starch and amaranth malt on the quality of sorghum-cassava-amaranth bread. Afr J Food Sci 2013;7:80-6.
33. Piotrowski D, Golos A, Grzegory P. Shrinkage and mechanical properties of defrosted strawberries dried by convective, vacuum and convective-vacuum methods. Acta Agrophysica 2014;21:193-204.
34. Piyachomkwan K, Chotineeranat S, Kijkhunasatian C, Tonwitowat R, Prammanee S, Oates CG, et al. Edible canna (Canna edulis) as a complimentary starch source to cassava for the starch industry. Industrial Crops Products 2002;16:11-21.
35. Siswanto A, Soebagyo SS. Optimasi formula sediaan tablet lepas lambat teofilin dengan bahan matrik HPMC, Na CMC, dan xanthan gum. Maj Farm Indonesia 2006;17:143-8.
36. Sulaiman TNS, Fudholi A, Nugroho AK. Optimasi formula tablet gastroretentive ranitidine HCl dengan system floating. Majalah Farmasi Indonesia 2011;22:106-14.
37. United States Pharmacopeial Convention. The United States Pharmacopeia: the national formulary; 2014.
38. Williams PCK. A rapid colorimetric procedure for estimating the amylose content of starch and flour; 1958.
39. Wlodarski K., Tajber L, Sawicki W. Physicochemical properties of direct compression tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA. Eur J Pharm Biopharm 2016;109:14–23.
40. Yusif RM, Hashim IIA, Mohamed EA, El Rakhawy MM. Investigation and evaluation of an in situ interpolymer complex of carbopol with polyvinylpyrrolidone as a matrix for gastroretentive tablets of ranitidine hydrochloride. Chem Pharm Bull Tokyo 2016;64:42-51.
41. Yusuf H, Radjaram A, Setyawan D. Modifikasi pati singkong pregelatin sebagai bahan pembawa cetak langsung. J Penelit Med Eksakta 2008;7:31-47.
Statistics
160 Views | 141 Downloads
Citatons
How to Cite
Dewantara Putra, I. G. N. A., MURWANTI, R., ROHMAN, A., & SULAIMAN , T. S. (2019). OPTIMIZING FORMULATION OF MINI TABLETS FLOATING RANITIDINE HCL USING FULLY PREGELATINIZED STARCH (MANIHOT ESCULENTA CRANTZ) WITH SIMPLEX LATTICE DESIGN. International Journal of Applied Pharmaceutics, 11(4), 32-40. https://doi.org/10.22159/ijap.2019v11i4.32657
Section
Original Article(s)