IDENTIFYING PROPOLIS COMPOUNDS POTENTIAL TO BE COVID-19 THERAPIES BY TARGETING SARS-COV-2 MAIN PROTEASE

  • LIA KUSUMA DEWI Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, 16424, Depok, West Java, Indonesia
  • MUHAMAD SAHLAN Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, 16424, Depok, West Java, Indonesia, Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, 16424, Depok, West Java, Indonesia
  • DIAH KARTIKA PRATAMI Lab of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Pancasila University, 12640, Jakarta, Indonesia
  • ALI AGUS Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • AGUSSALIM Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • ARDO SABIR Department of Conservative Dentistry, Faculty of Dentistry, Hasanuddin University, Makasar, Indonesia

Abstract

Objective: The study aims to perform molecular docking to examine the interaction between propolis compound and SARS-CoV-2 main protease.


Methods: The protein target of this research was the crystal structure of SARS-CoV-2 main protease in complex with an inhibitor N3 (PDB ID: 6LU7). The ligand of this research was the bioactive compounds from Propolis of Tetragonula aff. biroi.


Results: The results showed that propolis compound which has the potential to inhibit SARS-CoV-2 protease activity was Sulabiroins A (binding affinity-8.1 kcal/mol), following by (2S)-5,7-dihydroxy-4'-methoxy-8-prenylflavanone acid and broussoflavonol F (binding affinity-7.9 kcal/mol) with binding similarity more than 50% compared to N3-main protease interaction.


Conclusion: Molecular docking showed propolis compounds of Tetragonula aff. biroi potential to inhibit SARS-CoV-2 main protease activity. The highest binding affinity presented by Sulabiroins A, following by (2S)-5,7-dihydroxy-4'-methoxy-8-prenylflavanone acid and broussoflavonol F, with values of-8.1 kcal/mol,-7.9 kcal/mol, and-7.9 kcal/mol, respectively, with binding similarity more than 50% compared to N3 and SARS-CoV-2 main protease interaction.

Keywords: COVID-19, SARS-CoV-2 main protease, Propolis compounds, Molecular Docking, Binding affinity

References

1. Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: an overview. J Chinese Med Assoc 2020;83:217-20.
2. Sabir JSM, Lam TTY, Ahmed MMM, Li L, Shen Y, Abo-Aba SEM, et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 2016;351:81–4.
3. Al-Tameemi K, Kabakli R. Novel coronavirus (2019-NCov): disease briefings. Asian J Pharm Clin Res 2020;11:13-5.
4. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323:1843-4.
5. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269–71.
6. Pratami DK, Munim A, Sundowo A, Sahlan M. Phytochemical profile and antioxidant activity of propolis ethanolic extract from tetragonula bee. Pharmacogn J 2018;10:128–35.
7. Sahlan M, Devina A, Pratami DK, Situmorang H, Farida S, Munim A, et al. Anti-inflammatory activity of Tetragronula species from Indonesia. Saudi J Biol Sci 2018;26:1531–8.
8. Sahlan M, Mandala DK, Pratami DK, Adawiyah R, Wijarnako A, Lischer K, et al. Exploration of the antifungal potential of Indonesian propolis from Tetragonula biroi bee on Candida sp. and Cryptococcus neoformans. Evergr J 2020;7:118–25.
9. Sabanovic M, Saltovic S, Mujkic AA, Jasic M, Bahic Z. Impact of propolis on the oral health. Balk J Dent Med 2019;23:1–9.
10. Fokt H, Pereira A, Ferreira AM, Cunha A, Aguiar C. How do bees prevent hive infections? The antimicrobial properties of propolis. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 2010;1:481–93.
11. Berretta AA, Silveira MAD, Capcha JMC, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease. Biomed Pharmacother 2020;131:110622.
12. Yildirim A, Duran GG, Duran N, Jenedi K, Bolgul BS, Miraloglu M, et al. Antiviral activity of hatay propolis against replication of herpes simplex virus type 1 and type 2. Med Sci Monit Int Med J Exp Clin Res 2016;22:422.
13. Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phyther Res 2001;15:561–71.
14. Lima WG, Brito JCM, da Cruz Nizer WS. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID?19 (SARS?CoV?2). Phyther Res 2020;1-8. https://doi.org/10.1002/ptr.6872
15. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61.
16. Miyata R, Sahlan M, Ishikawa Y, Hashimoto H, Honda S, Kumazawa S. Propolis components and biological activities from stingless bees collected on South Sulawesi, Indonesia. Hayati J Biosci 2020;27:82-7.
17. Miyata R, Sahlan M, Ishikawa Y, Hashimoto H, Honda S, Kumazawa S. Propolis components from stingless bees collected on south sulawesi, indonesia, and their xanthine oxidase inhibitory activity. J Nat Prod 2019;82:205–10.
18. Sahlan M, Pratami DK, Asih SC, Devina A, Mahadewi AG, Yohda M, et al. The biological activities of indonesian propolis and it’s molecular marker. Apiterapi ve Doga Derg 2018;1:66-8.
19. Alqarni AM, Niwasabutra K, Sahlan M, Fearnley H, Fearnley J, Ferro VA, et al. Propolis exerts an anti-inflammatory effect on PMA-differentiated THP-1 cells via inhibition of purine nucleoside phosphorylase. Metabolites 2019;9:75-9.
20. Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K. Using VMD: an introductory tutorial. Curr Protoc Bioinforma 2008;24:5–7.
21. Csizmadia P. Marvin sketch and marvin view: molecule applets for the worldwide web. In: Proceeding of ECSOC-3. The Third International Electronic Conference on Synthetic Organic Chemistry. Switzerland: MDPI; 1999.
22. Flamandita D, Lischer K, Pratami DK, Aditama R, Sahlan M. Molecular docking analysis of podophyllotoxin derivatives in Sulawesi propolis as potent inhibitors of protein kinases. In: AIP Conference Proceedings. AIP Publishing LLC; 2020. p. 20010.
23. Vieira TF, Sousa SF. Comparing autodock and vina in ligand/decoy discrimination for virtual screening. Appl Sci 2019;9:4538-43.
24. Yuan S, Chan HCS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 2017;7:e1298.
25. Ramírez D, Caballero J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules 2018;23:1038-43.
26. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011;51:2778–86.
27. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020;582:289-93.
28. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved ?-ketoamide inhibitors. Science 2020;368:409–12.
29. Andrade BS, Ghosh P, Barh D, Tiwari S, Silva RJS, de Assis Soares WR, et al. Computational screening for potential drug candidates against the SARS-CoV-2 main protease. F1000 Res 2020;9:514.
30. Yu R, Chen L, Lan R, Shen R, Li P. Computational screening of antagonist against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int J Antimicrob Agents 2020;56:106012.
31. Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, et al. Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem 2005;280:31257–66.
32. Singh M, Nagpal M, Singh V, Sharma A, Dhingra Ga, Maman P, Puri V. Covid-19:epidemiology, pathogenicity and global updates. Int J Appl Pharm 2020;12:16-8.
Statistics
109 Views | 112 Downloads
Citations
How to Cite
DEWI, L. K., SAHLAN, M., PRATAMI, D. K., AGUS, A., AGUSSALIM, & SABIR, A. (2021). IDENTIFYING PROPOLIS COMPOUNDS POTENTIAL TO BE COVID-19 THERAPIES BY TARGETING SARS-COV-2 MAIN PROTEASE. International Journal of Applied Pharmaceutics, 13(2), 103-110. https://doi.org/10.22159/ijap.2021.v13s2.20
Section
Original Article(s)

Most read articles by the same author(s)