IN VITRO DIGESTIBILITY OF THE DROMEDARY WHEY PROTEINS: POTENTIAL USES IN INFANT MILK ALLERGIES

  • Fadhila Abderrahmane Laboratory of Nutrition Physiology and Food Safety, Department of Biology, Faculty of Science, University of Oran, El Menaouer 31000 Oran, Algeria.
  • Fatseh Mezmaze Laboratory of Nutrition Physiology and Food Safety, Department of Biology, Faculty of Science, University of Oran, El Menaouer 31000 Oran, Algeria.
  • Abdellah Chekroun Laboratory of Nutrition Physiology and Food Safety, Department of Biology, Faculty of Science, University of Oran, El Menaouer 31000 Oran, Algeria.
  • Djamel Saidi Laboratory of Nutrition Physiology and Food Safety, Department of Biology, Faculty of Science, University of Oran, El Menaouer 31000 Oran, Algeria.
  • Omar Kheroua Laboratory of Nutrition Physiology and Food Safety, Department of Biology, Faculty of Science, University of Oran, El Menaouer 31000 Oran, Algeria.

Abstract

Objective: Dromedary milk has a good nutritive value and is free of b-lactoglobulin (b-Lg), which is considered one of the major antigens of cow’s milk proteins responsible for the incidence of allergy in infancy. In this work, we try to assess the in vitro gastrointestinal digestion of dromedary’s whey proteins.

Methods: The dromedary and bovine whey proteins were subjected to two successive hydrolysis: pepsic followed by the mixture of trypsin/chymotrypsin. The kinetics of degradation was determined, then the degree of hydrolysis (DH) and the peptide chains length (PCL) was calculated. SDS-PAGE was carried out to evaluate the specific protein composition before and after degradation.

Results: The determination of α-NH2 free functions and DH shows that the dromedary’s whey proteins are more susceptible to pepsin digestion (***p<0.001, *p<0.05/ **p<0.01, *p<0.05), and combined trypsin/chymotrypsin digestion (***p<0.001, **p<0.01/ **p<0.01, **p<0.01) compared to bovine whey proteins digestibility. In the other hand, the PCL of the dromedary hydrolysates obtained are shorter than those of the bovine hydrolysates. The electrophoretic profile of native dromedary’s whey proteins shows the absence of the b-Lg and the presence of specific proteins (CWBP: Camel Whey Basic Protein, PGRP: Peptidoglycan Recognition Protein and WAP: Whey Acidic Protein), Also, we observed in the electrophoretic gels that a new band was present and could correspond to new peptide generated after the peptic hydrolysis of dromedary’s whey proteins.

Conclusion: The gastrointestinal digestion of the two whey is important with higher DH of dromedary’s whey proteins and PCL almost identical at the end of digestion.

 

Keywords: Dromedary’s milk, Cow’s milk, Whey proteins, Animal’s endopeptidases, Hydrolysis, DH, PCL, Digestibility

Downloads

Download data is not yet available.

References

1. El-Agamy EI. The challenge of cow milk protein allergy. Small Ruminant Res 2007;68:64-72.
2. Prieels JP, Poortmans J, Dolmans M, Leonis J. Immunological cross-reactions of alpha-lactalbumin from different species. Eur J Biochem 1975;50(3):523–7.
3. El-Agamy EI. Immunological characterization of goat milk proteins with respect to human health and nutrition. J Dairy Res 2006;59(2):169-75.
4. El-Agamy EI. Buffalo milk proteins: molecular and immunochemical characterization. Egypt J Dairy Sci 2006;82(1):1-6.
5. El-Agamy, E. I. Camel milk proteins are suitable for the nutrition of cow’s milk protein allergic pattiens. J. Food Chem 2006c; article in press.
6. El-Agamy EI, Abou-Shloue ZI, Abdel-Kader YI. A comparative study of milk proteins from different species. II. Electrophoretic patterns, molecular characterization, amino acid composition and immunological relationships. A comparative study of milk proteins from different species. II. Electrophoretic patterns, molecular characterization, amino acid composition and immunological relationships. In: Third Alexandria Conference on Food Science and Technology, Alexandria, Egypt; 1997. p. 51-62.
7. Carroccio A, Cavataio F, Iacono G. Cross-reactivity between milk portions of different animals. Clin Exp Allergy 1999;29(8):1014–6.
8. Restani P, Beretta B, Fiocchi A, Ballabio C, Galli CL. Cross-reactivity between mammalian proteins. Ann Allergy Asthma Immunol 2002;89 (6 Suppl 1):11-5.
9. Restani P, Gaiaschi A, Plebani A, Beretta B, Cavagni G, Fiocchi A, et al. Crossreactivity between milk proteins from different animal species. Clin Exp 1999;29:997.
10. Youcef N, Saîdi D, Mezemaze F, El Mecherfi KE, Kaddouri H, Negaoui H, et al. Cross reactivity between dromedary whey proteins and IgG anti bovine a-lactalbumin and anti b-lactalbumin. Am J Appl Sci 2009.
11. Salami M, Yousefi R, Reza Ehsani M, Dalgalarrondo M, Chobert J-M, Haertle´ T, et al. Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes, Int Dairy J 2008;18 1097-102.
12. Kovacs-Nolan J, Zhang JW, Hayakawa S, Mine Y. Immunochimical and structural analysis of the pepsin-digested egg white ovomucoid. J Agric Food Chem 2000;48:6261-6.
13. Balandras F. Etude in vitro de la sensibilité de l’α-casozépine, décapeptide à activité benzodiazépine mimétique, à diverses protéases et peptidases du tractus gastrointestinal. Etude comportementale chez le rat Wistar de l’activité anxiolytique de certains produits de dégradation de l’α-casozépine par la pepsine, thèse de doctorat, Spécialité: Science Agronomiques; 2008. p. 43-4.
14. Doi E, Shibata D, Maroba T. Modified colorimetric ninhydrin methods for assay. Anal Biochem 1981;22:135-44.
15. Angeles Navarrete del Toro M, Fernando L García-Carreño FL. Evaluation of the Progress of Protein Hydrolysis. Current Protocols in Food Analytical Chemistry B2.2.1-B2.2.14 Copyright © by John Wiley & Sons, Inc; 2002.
16. Salami M, Yousefi R, Reza Ehsani M, Razavi SH, Chobert J-M, Haertle´T, et al. Enzymatic digestion and antioxidant activity of the native and molten globule states of camel α-lactalbumin: Possible significance for use in infant formula. Int Dairy J 2009;19:518-23.
17. Adler-Nissen, J Enzymatic hydrolysis of food proteins. Elsevier Applied Science Publishing, London; 1986.
18. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bactriophage T 4. Nature 1970;229:680-5.
19. El-Agamy EI, Ruppanner R, Ismail A, Champagne CP, Assaf R. Purification and characterization of lactoferrin, lactoperoxidase, lysozyme and immunoglobulins from camel’s milk. Int Dairy J 1996;6:129–45.
20. Konuspayeva G, Faye B, Loiseau G, Levieux D. Lactoferrin and immunoglobin content in camel milk from Kazakhstan. J Dairy Sci 2007;90:38–46.
21. Lindberg T, Borulf S, Jakobsson I. Digestion of milk protein in infancy. Acta Paediatr Scand Suppl 1989;351:29-33.
22. Silva VDM, Silveste MPC. Functional properties of bovine blood plasma intended for use as a functional ingredient in human food. Lebensm Wiss Technol 2003;36:709-18.
23. Bizzoto CS, Capobiango M, Silvestre MPC. Evaluation of functional properties of a blood protein. Pak J Nutr 2005;4s:11-6.
24. Capobiango M, Bizzoto CS, Biasutti EAR, Silvestre MPC. Action of pepsin on emulsifying properties of globin. Int J Food Prop 2006;9:357-64.
25. Biasutti EAR, Vieira CR, Capobiango M, Silva VDM, Silvestre MPC. Study of some functional properties of casien: effct of pH and tryptic hydrolysis. Int J Food Prop 2007;10:173-83.
26. Chicon R, Belloque J, Alonso E, Lopez-Fandino R. Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocolloids 2009;23:593-9.
27. Al-Attas M. Determination of essential elements in milk and urine of camel and in Nigella sativa seeds. Arabian J Chem 2008;1(2):123–9.
28. Adel-Patient K, Bernard H, Wal J-M. Devenir des allergènes dans le tube digestif. Revue Française d’Allergologie et d’Immunologie Clinique 2008;48:335-43.
29. Hernández-Ledesma B, Recio I, Amigo L. β-lactoglobulin as source of bioactive peptides. Amino Acids 2008;35. p. 257–65.
30. Hambling SG, McAlpine AS, Sawyer L. β-lactoglobulin. In PF. Fox (Ed.). Advanced dairy chemistry, Vol. 1: Proteins. Essex, UK: Elsevier Science Publishers Ltd; 1992. p. 141–90.
31. Walstra P, Wouters JTM, Geurts TJ. Dairy science and technology. CRC/Taylor & Francis, Boca Raton; 2006.
32. El-Hatmi H, Girardet J M, Gaillard JL, Yahyaoui MH, Attia H. Characterisation of whey proteins of camel (Camelus dromedarius) milk and colostrum. Small Ruminant Res 2007;70:267–71.
33. Sabikhi L. Designer milk. Adv Food Nutr Res 2007;53:161–98.
34. Farrell HM, Jimenez Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, et al. Nomenclature of the proteins of cow milk–sixth revision; 2004.
35. Senoussi C. Les protéines sériques du lait camelin collecté dans trois régions du sud algérien: essais de séparation et caractérisation de la fraction protéose peptone. Mémoire de magister, Université Mouloude Mammari de Tizi Ouzou; 2011. p. 6-15-30-32-77.
36. Casbarra A, Birolo L, Infusini G, Dal Piaz F, Svensson M, Pucci P, et al. Conformational analysis of HAMLET, the folding variant of human α-lactalbumin associated with apoptosis. Protein Sci 2004;13:1322–30.
37. Fruton JS. A history of pepsin and related enzymes. Q Rev Biol 2002;77(2):127-47.
38. Samloff IM. Pepsinogens, pepsins and pepsin inhibitors. Gastroenterol 1971;60 (4):586-99.
39. Moreno FJ. Gastrointestinal digestion of food allergens: effect on thier allerginicity. Biomed Pharmacother 2007;61:50-60.
40. Olsen JV, Ong S-E, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 2004;3:608-14.
41. Mota MVT, Ferreira IMPLVO, Oliveira MBP, Rocha C, Teixeira JA, Torres D, et al. Trypsin hydrolysis of whey protein concentrates: Characterization using multivariate data analysis. Food Chem 2006;94 :278–86.
42. Groleau P-E, Gauthier SF, Pouliot Y. Effect of residual chymotryptic activity in a trypsin preparation on peptide aggregation in a β-lactoglobulin hydrolysate. Int Dairy J 2003;13(11):887-95.
43. Chelulei Cheison S, Schmitt M, Leeb E, Letzel T, Kulozik U. Influence of temperature and degree of hydrolysis on the peptide composition of trypsin hydrolysates of  lactoglobulin: analysis by LC–ESI-TOF/MS. Food Chem 2010;121:457-67.
44. Schmidt DG, Meijer RJGM, Slangen CJ, van Beresteijn ECH. Raising the pH of the pepsincatalysed hydrolysis of bovine whey proteins increases the antigenicity of the hydrolysates. Clin Exp Allergy 1995;25:1007-17.
45. El-Zahar K, Sitohy M, Choiset Y, Métro F, Haertlé T, Chobert J-M. Peptic hydrolysis of ovine b-lactoglobulin and a-lactalbumin. Exceptional susceptibility of native ovine b-lactoglobulin to pepsinolysis. Int Dairy J 2005;15:17–27.
46. Reddy IM, Kella NKD, Kinsella JE. Structural and conformational basis of the resistance of β-lactoglobulin to peptic and chymotryptic digestion. J Agric Food Chem 1988;36:737-41.
47. Asselin J, Hebert J, Amiot J. Effects of in vitro proteolysis on the allergenicity of major whey proteins. J Food Sci 1989;54:1037-9.
48. Yang JrF, Zhang M, Chen J, Liang Y. Structural changes of a-lactalbumin induced by low pH and oleic acid. Biochim Biophys Acta Proteins Proteomics 2006;1764:1389-96.
49. Beg OU, Bahr-Lindstrom HV, Zaidi ZH, Jornvall H. The primary structure of α-Lactalbumine from camel milk. Eur J Biochim 1985;147:233-9.
50. Mckenzie HA, White FH. Lysozyme and α-Lactalbumin: structure, fonction and interrelations. Adv Protein Chem 1991;41:173-315.
51. Ting KLH, Jernigan RL. Identifying a folding nucleus for the lysozyme/α-Lactalbumin family from sequence concervation clusters. J Mol Evol 2002;54:425-36.
52. Gbogouri GA. Co-valorisation des protéines et des lipides riches en lécithine et en acides gras polyinsaturés oméga 3 à partir de têtes de saumon (Salmo salar) par hydrolyse enzymatique. Thèse pour obtenir le grade de docteur de l’INPL, Laboratoire de Science et Génie Alimentaires ; 2005. p. 16-19-21.
53. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 2007;18:163–9.
54. Farah Z. Composition and characteristics of camel milk. J Dairy Res 1993;60:603–26.
55. Kappeler S. Compositional and structural analysis of camel milk proteins with emphasis on protective proteins. PhD. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland; 1998. p. 59–62.
56. Nguyen Thi MH. Valorisation de matières premières marines de faible valeur ajoutée: Application aux co-produits de thon. Thèse de Doctorat, Université de Nantes Ufr Sciences et Techniques, Ecole Végétal-Environnement-Nutrition- Agro-Alimentaire-Mer; 2009. p. 34-60.
57. Kristinsson HG, Rasco BA. Fish protein hydrolysates: production, biochimical, and functional properties. Crit Rev Food Sci Nutr 2000;40(1):43-81.
58. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 2007;102:1317-27.
59. Oldaeus G, Björksten B, Jenmalm MC, Kjellman NI. Cow’s milk IgE and IgG antibody responses to cow’s milk formulas. Allergy 1999;54:352-7.
60. Giampietro P, Kjellman NIM, Oldaeus G, Wouters-Wesseling W, Businco L. Hypoallergenicity of an extensively hydrolyzed whey formula. Pediatr Allergy Immunol 2001;12:83-6.
61. Fritsché R. Animal models in food allergy: assessment of allergenicity and preventive activity in infant formulas. Toxicol Lett 2003;140-141:303-9.
62. Farah Z. Effect of heat treatment on whey proteins of camel milk. Milchwissenschaft 1986;41:763-5.
63. Ochirkhuyag B, Chobert JM, Dagalarrondo M, Choiset Y, Haertle T. Characterization of whey proteins from mongolian yak, Khainak and bactrian camel. J Food Biochem 1998;22:105-24.
64. Merin U, Bernstein S, Bloch-Damti A, Yagil R, van Creveld C, Lindner P, et al. A comparative study of milk serum proteins in camel (Camelus dromedarius) and bovine colostrum. Livest Prod Sci 2001;67:297-301.
65. Farah Z, Bernard E, Meyer J, Rehberger B, Thomet A, Gallman. PU UHT Processing of camel milk. Agroscope, Pub Liberfeld UBISI, Cap Town. Sowth Africa; 2004.
66. Levieux D, Levieux A, El-Hatmi H, Rigaudiere JP. Immunochimical quantification of heat denaturation of camel (Camelus dromadarius) whay proteins. J Dairy Res 2006;73:1-9.
67. El-Hatmi H, Levieux A, Levieux D. Camel (Camelus dromadarius) immunoglobulin G, α-lactaglobuline, serum albumin and lactoferrine in clostrums and milk during the early post partum period. J Dairy Res 2006;73:288-93.
68. Izquierdo FJ, Peñas E, Baeza ML, Gomez R. Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. Int Dairy J 2008;18:918–22.
69. Kappeler S, Henberger C, Farah Z, Puhan Z. Expression of the peptidoglycan recognition protien, PGRP, in the lacting mammary gland. J Dairy Sci 2004;87(8):2660-8.
70. Sharma P, Singh N, Sinha M, Sharma S, Perbandt M, Betzel C, et al. Crystal structure of the peptidoglycan recngnition protein at 1, 8°A resolution reveals dual strategy to combat infection thouth two independent functional homodimers. J Mol Biol 2008;378(4):923-32.
71. Beg OU, Bahr-Lindstrom HV, Zaidi ZH, Jornvall H. A small camel milk protein rich in cysteine /half cystine. Biosci Repports 1984;4:1065-70.
72. Beg OU, Bahr-Lindstrom HV, Zaidi ZH, Jornvall H. A camel milk whey protein rich in half cystine, primary stucture, assessment of variations, internal repeat patterns and relationships with neutrophysin and other active polypeptidees. Eur J Biochem 1986;159:195-201.
73. El-Agamy EI, Nawar M, Shamsia SM, Awad S, Haenlein GFW. Are camel milk proteins convenient to the nutrition of cow milk allergic children. Small Ruminant Res 2009;82:1-6.
Statistics
532 Views | 1346 Downloads
How to Cite
Abderrahmane, F., F. Mezmaze, A. Chekroun, D. Saidi, and O. Kheroua. “IN VITRO DIGESTIBILITY OF THE DROMEDARY WHEY PROTEINS: POTENTIAL USES IN INFANT MILK ALLERGIES”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 7, no. 2, Dec. 2014, pp. 115-20, https://innovareacademics.in/journals/index.php/ijpps/article/view/2624.
Section
Original Article(s)