STATISTICAL DATA ANALYSIS WHICH RESULT FROM THE BIO-DIAGNOSIS AND BIO-TREATMENT OF INJURED RATS WITH THE HYPERLIPIDEMIA AND HYPERGLYCEMIA DISEASES

  • Hanan F Aly
  • Howaida I Abd-alla
  • Sanaa A Ali
  • Mohamed M Mamdooh
  • Reda Abo Alez
  • Mohammed T Abu-krisha

Abstract

ABSTRACT
Objective: This study in bioinformatics aims to investigate the potential effect of Ipomoea tricolor and Sophora tomentosa on liver function enzymes
activity, serum lipid profile, oxidative stress biomarkers, and on blood glucose in high fat diet-induced hypercholesterolemia (HC) and STZ-induced
hyperglycemia (HG) in rats.
Methods: Blood glucose level, liver function enzymes, alanine aminotransferases and aspartate aminotransferases, alkaline phosphatase, and lactate
dehydrogenase (LDH) were determined. Besides, lipid profile including total cholesterol (TC), triacylglycerol (TG), total lipid, and high-density
lipoprotein-cholesterol was investigated. Moreover, oxidative stress biomarkers, lipid peroxide, and nitric oxide as well as non-enzymatic antioxidant,
glutathione (GSH) were also examined in different therapeutic groups.
Results: A significant increase in blood glucose level, liver function enzyme activities, LDH, lipid profile and oxidative stress markers, while significant
decrease in LDH-C and GSH level in HC-HG induced rats compared to control one. A marked amelioration in all biochemical parameters under
investigation on treatment of HC-HG rats with I. tricolor and S. tomentosa with different fluctuating percentages of improvement. Histopathological
examination of liver and pancreas was also performed and declared HC-HG showed congestion in portal vessels and sinusoids with mild centrilobular
hepatocyte degeneration, marked hepatocyte ballooning and hydropic degeneration, while HC-HG treated rats with I. tricolor and S. tomentosa showed
normal lobular hepatic architecture with mild sinusoidal dilatation and congestion. On the other hand, a histological organization of pancreas of HC-HG
rats showing disarrangement changes in pancreatic blood vessels and interlobular duct as well as disordered in acini. The treatment of HC-HG rats with
I. tricolor and S. tomentosa showed enhancement in Langerhans cells and restore of most pancreatic tissue in comparison with standard drugs.
Conclusion: The statistical results showed that each extract ameliorated high blood glucose level liver injury, HC and oxidative stress indicating
relieving of oxidative damage associated with the complexity of HG and HC. These results demonstrated that these two plants extracts may be a
candidate intelligent antioxidant, hypolipidemic, hypoglycemic, and hepatoprotective nutraceuticals which need further clinical investigation to be
applied effectively to reduce perturbation in HC associated diabetes.
Keywords: Ipomoea tricolor, Sophora tomentosa, Lipid profile and liver function enzymes, Endothelial dysfunction markers, Statistics and image
recognition, Histopathological analysis.

References

1. Keedwell E, Narayanan A. Intelligent Bioinformatics. Chichester, England: John Wiley & Sons, Ltd; 2005.
2. Borai IH, Ezz MK, Rizk MZ, El-Sherbiny M, Matloub AA, Aly HF, et al. Hypolipidemic and anti-atherogenic effect of sulphated polysaccharides from the freen alga Ulvafasciata. Int J Pharm Sci Rev Res 2015;31(1):1-12.
3. Liang YT, Wong WT, Guan L, Tian XY, Ma KY, Huang Y, et al. Effect of phytosterols and their oxidation products on lipoprotein profiles and vascular function in hamster fed a high cholesterol diet. Atherosclerosis 2011;219(1):124-33.
4. Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. Management of statin-intolerant high-risk patients. Curr Vasc Pharmacol 2010;8(5):632-7.
5. Krishna PM, Rao KN, Sandhya S, Banji D. A review on phytochemical, ethno medical and pharmacological studies on genus Sophora, Fabaceae. J Rev Bras Farm 2012;22(5):1145-54.
6. Yang X, Yang J, Xu C, Huang M, Zhou Q, Lv J, et al. Antidiabetic effects of flavonoids from Sophora flavescens EtOAc extract in Type 2 diabetic KK-ay mice. J Ethnopharmacol 2015;171:161-70.
7. Adaramoye OA, Akintayo O, Achem J, Fafunso MA. Lipid-lowering effects of methanolic extract of Vernonia amygdalina leaves in rats fed on high cholesterol diet. Vasc Health Risk Manag 2008;4(1):235-41.
8. Milani E, Nikfar S, Khorasani R, Zamani MJ, Abdollahi M. Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp Biochem Physiol C Toxicol Pharmacol 2005;140(2):251-5.
9. Shalaby NM, Abd-Alla HI, Aly HF, Albalawy MA, Shaker KH, Bouajila J. Preliminary in vitro and in vivo evaluation of anti-diabetic activity of Ducrosia anethifolia Boiss. And its linear furanocoumarins. J BioMed Res Int 2014;2014:1-13.
10. Dachicourt N, Bailbé D, Gangnerau MN, Serradas P, Ravel D, Portha B. Effect of gliclazide treatment on insulin secretion and beta-cell mass in non-insulin dependent diabetic Goto-Kakisaki rats. Eur J Pharmacol 1998;361(2-3):243-51.
11. Zollner N, Kirsch K. Colorimetric method for determination of total lipid. Ges Exp Med 1962;135:545.
12. Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 1982;28(10):2077-80.
13. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20(4):470-5.
14. Lopes-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem 1977;23(3):882-4.
15. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18(6):499-502.
16. Trinder P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol 1969;22(2):246.
17. Reitman S, Frankel S. Glutamic-pyruvate transaminase assay by colorimetric method. Am J Clin Pathol 1957;28(1):56-63.
18. Belfield A, Goldberg DM. Hydrolysis of adenosine-monophosphate by acid phosphatase as measured by a continuous spectrophotometric assay. Enzyme 1971;12:561-6.
19. El-Baz FK, Aly HF, Abd-Alla HI, Saad S. Bioactive flavonoid glycosides and antidiabetic activity of Jatropha curcas on streptozotocin-induced diabetic rats. Int J Pharm Sci Rev Res 2014;29(2):143-56.
20. Montgomery HA, DymockJF. The determination of nitratein water. Analyst 1961;86:414-6.
21. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882-8.
22. Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 1978;90(1):37-43.
23. Harris RA, Padilla J, Hanlon KP, Rink LD, Wallace JP. The flow-mediated dilation response to acute exercise in overweight active and inactive men. Obesity (Silver Spring) 2008;16(3):578-84.
24. Ikebukuro K, Adachi Y, Yamada Y, Fujimoto S, Seino Y, Oyaizu H, et al. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats. Transplantation 2002;73(4):512-8.
25. Matsumoto S, Koshiishi I, Inoguchi T, Nawata H, Utsumi H. Confirmation of superoxide generation via xanthine oxidase in streptozotocin-induced diabetic mice. Free Radic Res 2003;37(7):767-72.
26. BÃ¥venholm PN, Pigon J, Ostenson CG, Efendic S. Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance. Diabetes 2001;50(6):1449-54.
27. Hashemnia M, Oryan A, Hamidi AR, Mohammadalipour A. Blood glucose levels and pathology of organs in alloxan-induced diabetic rats treated with hydro-ethanol extracts of Allium sativum and Capparis spinosa. Afr J Pharm Pharmacol 2012;6(21):1559-64.
28. Eddouks M, Jouad H, Maghrani M, Lemhadri A, Burcelin R. Inhibition of endogenous glucose production accounts for hypoglycemic effect of Spergularia purpurea in streptozotocin mice. Phytomedicine 2003;10(6-7):594-9.
29. Ahmed HH, Aly HF, Ali SA. Potential impact of coq10 and vitamin e against (STZ) induced metabolic deterioration in the albino rats. Int J Pharm Pharm Sci 2015;7(11):176-84.
30. Ali FF, El-Baz KF, Abd El-Rahman AA, Aly HF, Mohamed AA, Saad SA. Attenuation of some metabolic deterioration induced by diabetes mellitus using different Jatropha curcas extracts. Int J Pharm Sci Rev Res 2015;30(2):164-71.
31. Noori S, Zafar H, Mahboob T. Biochemical effectiveness of cocoa powder on electrolytes homeostasis, liver and cardiac specific enzymes and renal function. Pak J Nutr 2009;8(6):882-6.
32. Rizk MZ, Aly HF, Matloub AM, Fouad GI. The anti-hypercholesterolemic effect of ulvan polysaccharide extracted from the green alga Ulvafasciata onaged hypercholesterolemic rats. Asian J Pharm Clin Res 2016;9(3):165-76.
33. Rizk MZ, El-Sherbiny M, Borai IH, Ezz MK, Aly HF, Matloub AA, et al. Sulphated polysaccharides (SPS) from the green alga Ulvafasciata extract modulates liver and kidney function in high fat diet-induced hypercholesterolemic rats. Int J Pharm Pharm Sci 2016;8(6):43-55.
34. Kim AR, Lee JJ, Lee YM, Jung HO, Lee MY. Cholesterol-lowering and anti-obesity effects of Polymnia sonchifolia Poepp and Endl. Powder in rats fed a high fat-high cholesterol diet. J Korean Soc Food Sci Nutr 2010;39(2):210-8.
35. Yadav YC, Srivastav DN, Seth AK, Gupta VD, Kuldeep S. Nephroprotective and curative activity of Lepidium sativum L. Seeds in albino rats using cisplatin induced nephrotoxicity. Pharmacology 2009;3:640-6.
36. Munish G, Chanchal G. Effect of Phyllanthus urinaria in biochemical profile of experimental hyperglycemic albino rats. Res J Pharm Sci 2012;1(1):2-6.
37. Zhou R, Xu Q, Zheng P, Yan L, Zheng J, Dai G. Cardioprotective effect of fluvastatin on isoproterenol-induced myocardial infarction in rat. Eur J Pharmacol 2008;586(1-3):244-50.
38. Arhoghro EM, Ekpo KE, Ibeh GO. Effect of aqueous extract of scent leaf (Ocimum gratissimum) on carbon tetrachloride (CC14)induced liver damage in albino wister rats. Afr J Pharm Pharmacol 2009;3(11):562-7.
39. Ogunnaike BF, Okutachi IR, Anucha ES, Gbodi OO, Shokunbi OS, Onajobi FD. Comparative anti-inflammatory activities of Jatropha curcas, Ocimum gratissimum and Solanum scabrum leaves. Nat Prod Plant Resour 2013;3(1):59-66.
40. Meira M, Da Silva EP, David J, Mand David JP. Review of the genus Ipomoea: Traditional uses, chemistry and biological activities. Rev Bras Farm 2012;22. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2012000300031.
41. Grace D, Mahuku G, Hoffmann V, Atherstone C, Upadhyaya HD, Bandyopadhyay R. International agricultural research to reduce food risks: Case studies on aflatoxins. Food Sec 2015;7:569-82.
42. Miyazaki K, Makino K, Iwadate E, Deguchi Y, Ishikawa F. Anthocyanins from purple sweet potato Ipomoea batatas cultivar Ayamurasaki suppress the development of atherosclerotic lesions and both enhancements of oxidative stress and soluble vascular cell adhesion molecule-1 in apolipoprotein E-deficient mice. J Agric Food Chem 2008;56(23):11485-92.
43. Yu Q, Cheng N, Ni X. Identifying 2 prenyl flavanones as potential hepatotoxic compounds in the ethanol extract of Sophora flavescens. J Food Sci 2013;78(11):1830-4.
44. Guo C, Zhang C, Li L, Wang Z, Xiao W, Yang Z. Hypoglycemic and hypolipidemic effects of oxymatrine in high-fat diet and streptozotocin-induced diabetic rats. Phytomedicine 2014;21(6):807-14.
45. Prasad K, Mantha SV, KaIra J, Lee P. Hypercholesterolemia-induced oxidative stress in heart and its prevention by vitamin E. Int J Angiol 1997;6:13-7.
46. Abu-Gabal NS, Abd-Alla HI, Mohamed NZ, Aly HF, Shalaby NM. Phytophenolics composition, hypolipidemic, hypoglycemic and antioxidative effects of the leaves of Fortunella japonica (Thunb.) Swingle. Int J Pharm Pharm Sci 2015;7:55-63.
47. Dawson TM, Dawson VL. Review: Nitric oxide: Actions and pathological roles. Neuroscientist 1995;1:7-18.
48. Yücel I, Akar Y, Yücel G, Ciftçioglu MA, Keles N, Aslan M. Effect of hypercholesterolemia on inducible nitric oxide synthase expression in a rat model of elevated intraocular pressure. Vision Res 2005;45(9):1107-14.
49. Boscá L, Zeini M, Través PG, Hortelano S. Nitric oxide and cell viability in inflammatory cells: A role for NO in macrophage function and fate. Toxicology 2005;208(2):249-58.
50. El-Baz FK, Aly HF, Ali GI, Mahmoud R, Saad SA. Antidiabetic efficacy of Dunaliella salina extract in STZ-induced diabetic rats. Int J Pharm Bio Sci 2016;7(3):(B)465-73.
51. El-Baz FK, Aly HF, Ali GH, Abdo SM, Saad SA. Therapeutic potential of Dunaliella salina extracton lipid. Int J Pharm Bio Sci 2016;7(3):(B)414-20.
52. Pavana P, Sethupathy S, Manoharan S. Antihyperglycemic and antilipidperoxidative effects of Tephrosia purpurea seed extract in streptozotocin induced diabetic rats. Indian J Clin Biochem 2007;22(1):77-83.
53. Hammes HP, Bartmann A, Engel L, Wülfroth P. Antioxidant treatment of experimental diabetic retinopathy in rats with nicanartine. Diabetologia 1997;40(6):629-34.
54. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother 2003;57(3-4):145-55.
55. Meister A, Anderson ME. Glutathione Metabolism and Functions. Kroc Foundation Series 6. New York: Raven Press; 1983. p. 1-382.
56. Qi HM, Zhang Q, Zhao T, Hu R, Zhangc K, Li Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharides extracted from Ulvapertusa (Cholorophyta). Bioorg Med Chem 2006;16(9):2441-5.
57. Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed. Upper Saddle River, NJ: Prentice-Hall; 2008.
58. Makni M, Fetoui H, Gargouri NK, Garoui el M, Jaber H, Makni J, et al. Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in omega-3 and omega-6 fatty acids in hypercholesterolemic rats. Food Chem Toxicol 2008;46(12):3714-20.
59. Krentz AJ. Lipoprotein abnormalities and their consequences for patients with Type 2 diabetes. Diabetes Obes Metab 2003;5 Suppl 1:S19-27.
60. Shirwaikar A, Rajendran K, Punitha IS. Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced Type 2 diabetic rats. J Ethnopharmacol 2005;97(2):369-74.
61. Hristova M, Aloe L. Metabolic syndrome – Neurotrophic hypothesis. Med Hypotheses 2006;66(3):545-9.
62. Liu X, Sun Z, Zhang M, Meng X, Xia X, Yuan W, et al. Antioxidant and anti hyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus. Carbohydr Polym 2012;90(4):1664-70.
63. Jang A, Srinivasan P, Lee NY, Song HP, Lee JW, Lee M, et al. Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chem Biol Interact 2008;174(2):109-17.
64. Cohen SL, Moore AM, Ward WE. Flaxseed oil and inflammation-associated bone abnormalities in interleukin-10 knockout mice. J Nutr Biochem 2005;16(6):368-74.
65. Flock MR, Green MH, Kris-Etherton PM. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv Nutr 2011;2(3):261-74.
66. Sorci-Thomas M, Prack MM, Dashti N, Johnson F, Rudel LL, Williams DL. Differential effects of dietary fat on the tissue-specific expression of the apolipoprotein A-I gene: Relationship to plasma concentration of high density lipoproteins. J Lipid Res 1989;30(9):1397-403.
67. Aly HF, Mahmoud EA, Ibrahim ME, Motawe HM, Ibrahim FM. Attenuation of some metabolic deterioration induced by diabetesmellitus using Nepeta cataria extracts. J Am Sci 2010;6:436-55.
68. Bobek P, Hromadová M, Ozdín L. Oyster mushroom (Pleurotus ostreatus) reduces the activity of 3-hydroxy-3-methylglutaryl CoA reductase in rat liver microsomes. Experientia 1995;51(6):589-91.
69. Ademuyiwa O, Ugbaja RN, Idumebor F, Adebawo O. Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta, Nigeria. Lipids Health Dis 2005;4:19.
70. Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: Beyond reverse cholesterol transport. Atherosclerosis 2002;161(1):1-16.
71. Assmann G, Nofer JR. Atheroprotective effects of high-density lipoproteins. Annu Rev Med 2003;54:321-41.
72. Qi HM, Huang LY, Liu XL, Liu DM, Zhang QB, Liu SM. Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulvapertusa (Chlorophyta). Carbohydr Polym 2012;87(2):1637-40.
73. Sathivel A, Raghavendran HR, Srinivasan P, Devaki T. Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on D-galactosamine induced hepatitis in rats. Food Chem Toxicol 2008;46(10):3262-7.
74. Saravanan R, Pari L. Antihyperlipidemic and antiperoxidative effect of diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats. BMC Complement Altern Med 2005;5:14.
Statistics
352 Views | 327 Downloads
Citatons
How to Cite
Aly, H. F., H. I. Abd-alla, S. A. Ali, M. M. Mamdooh, R. A. Alez, and M. T. Abu-krisha. “STATISTICAL DATA ANALYSIS WHICH RESULT FROM THE BIO-DIAGNOSIS AND BIO-TREATMENT OF INJURED RATS WITH THE HYPERLIPIDEMIA AND HYPERGLYCEMIA DISEASES”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 9, no. 9, Dec. 2016, pp. 122-30, doi:10.22159/ajpcr.2016.v9s3.14439.
Section
Original Article(s)

Most read articles by the same author(s)

1 2 > >>