The FISH VENOM TOXINS: NATURAL SOURCE OF PHARMACEUTICALS AND THERAPEUTIC AGENTS

FISH VENOM TOXINS:

  • Ravi Kant Upadhyay

Abstract

Present review article explain major toxins from various fish species with their physiological and clinical effects. Fish toxins target three different ions channels, ligand gated channels, G protein coupled receptors present on body cells and obstructs their physiological functions and metabolic functions. They affect molecules which participate in signaling pathways and impose toxic, inflammatory and immune-modulatory activities. Their activity ranges from hemolytic, cardiovascular and obstruction of nerve functions. Fish toxins cause severe pain that radiates up in affected limbs and regional lymphatics. Other biological activities noted in fish venom and its components are anticancerous, antimicrobial and proteolytic activity. Fish venom peptides cause venular stasis, hemorrhage and make changes in the arteriolar wall diameter. Toxins also impose typical inflammatory process in post-capillary venules. For quick neutralization of fish venom effect in victims antigen-specific antibodies of high affinity are used to minimize the symptoms and immediate inflammatory reaction. Fish venom toxins are of wider biomedical applications and can be used for preparation of immune diagnostics, bio-pesticides, anticancer agents and analgesics by using its biological information. 

Keywords: Fish toxin, Envenomation, Pharmaceutical activity, Bio-pesticides, Anti-venom therapy

Downloads

Download data is not yet available.

References

REFERENCES
1. Church J.E., Hodgson W.C. The pharmacological activity of fish venoms. Toxicon. 2002.
2. Halstead BW, 1970. Poisonous and venomous marine animals of the world, vol 3. Washington, DC: U.S. Government Printing Office.
3. Halstead BW, 1988. Poisonous and venomous marine animals of the world, 2nd ed. Princeton, NJ: The Darwin Press
4. Hardman M, 2002. The phylogenetic relationships among extant catfishes, with special reference to Ictaluridae (Otophysi: Siluriformes) (PhD dissertation). Urbana-Champaign, IL: University of Illinois; 1–206.
5. Nelson G, 1989. Phylogeny of major fish groups, In: The hierarchy of life: molecules and morphology in phylogenetic analysis (Fernholm B, Bremer K, and Jo ¨rnvall, eds) Amsterdam, the Netherlands: Excerpta Medica; 325–336.
6. Nelson JS, 1994. FishesoftheWorld,3rd ed. NewYork: JohnWileyandSons.
7. Smith WL and Wheeler WC, 2004. Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidencefrom mitochondrialandnuclear sequence data. Mol Phylogenet Evol 32:627–646.
8. Smith-Vaniz WF, Satapoomin U, and Allen GR, 2001. Meiacanthus urostigma, a new fangblenny from the northeastern Indian Ocean, with discussion and examples of mimicry in species of Meiacanthus (Teleostei: Blenniidae: Nemophini). Aqua J Ichthyol Aquat Biol 5:25–43.
9. Smith W.L., Wheeler W.C. Venom evolution widespread in fishes: A phylogenetic road map for the bioprospecting of piscine venoms. J. Hered. 2006; 97:206–217.
10. Haddad, V., Jr.; Martins, I.A. Frequency and gravity of human envenomations caused by marine catfish (suborder siluroidei): A clinical and epidemiological study. Toxicon 2006, 47, 838–843.
11. Haddad, V.; Martins, I.A.; Makyama, H.M. Injuries caused by scorpion fishes (Scorpaena plumieri Bloch, 1789 and Scorpaena brasiliensis Cuvier, 1829) in the Southwestern Atlantic Ocean (Brazilian coast): Epidemiologic, clinic and therapeutic aspects of 23 stings in humans. Toxicon 2003, 42, 79–83.
12. O’Connor, J.M.; Hahn, S.T. An epidemiological study of bullrout (Notesthes robusta) envenomation on the north coast of NSW. Aust. Emerg. Nurs. J. 2001, 4, 16–18.
13. Muirhead, D. Applying pain theory in fish spine envenomation. SPUMS 2002, 32,
14. Zhang H., Gao S., Lercher M.J., Hu S., Chen W.-H. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res. 2012;40:W569–W572.
15. Hardman M, 2002. The phylogenetic relationships among extant catfishes, with special reference to Ictaluridae (Otophysi: Siluriformes) (PhD dissertation). Urbana-Champaign, IL: University of Illinois
16. Halstead, B.W.; Chitwood, M.J.; Modglin, F.R. The anatomy of the venom apparatus of the zebrafish, Pterois volitans (Linnaeus). Anat. Rec. 1955, 122, 317–333. 20.
17. B.W.; Chitwood, M.J.; Modglin, F.R. Stonefish stings, and the venom apparatus of Synanceja horrida (Linnaeus). Trans. Am. Microsc. Soc. 1956, 75, 381–397.
18. Halstead, B.W.; Chitwood, M.J.; Modglin, F.R. The venom apparatus of the California scorpionfish, Scorpaena guttata Girard. Trans. Am. Microsc. Soc. 1955, 74, 145–158.
19. Fishelson, L. Histology and ultrastructure of the recently found buccal toxic gland in the fish Meiacanthus nigrolineatus (Blenniidae). Copeia 1974, 2, 386–392
20. King, G. Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics; Royal Society of Chemistry: London, UK, 2015.
21. Ortiz, E.; Gurrola, G.B.; Schwartz, E.F.; Possani, L.D. Scorpion venom components as potential candidates for drug development. Toxicon 2015, 93, 125–135
22. Wright J.J. Diversity, phylogenetic distribution, and origins of venomous catfishes. BMC Evol. Biol. 2009;9:282.
23. Harris RJ1, Jenner RA2Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System.
24. Church, J.E.; Hodgson, W.C. The pharmacological activity of fish venoms. Toxicon 2002, 40, 1083–1093.
25. Garnier, P.; Goudey-Perriere, F.; Breton, P.; Dewulf, C.; Petek, F.; Perriere, C. Enzymatic properties of the stonefish (Synanceia verrucosa Bloch and Schneider, 1801) venom and purification of a lethal, hypotensive and cytolytic factor. Toxicon 1995, 33, 143–155.
26. Garnier P., Sauviat M.-P., Goudey-Perriere F., Perriere C. Cardiotoxicity of verrucotoxin, a protein isolated from the venom of Synanceia verrucosa. Toxicon. 1997;35:47–55.
27. Yazawa K., Wang J.W., Hao L.Y., Onoue Y., Kameyama M. Verrucotoxin, a stonefish venom, modulates calcium channel activity in guinea-pig ventricular myocytes. Br. J. Pharmacol. 2007;151:1198–1203. doi: 10.1038/sj.bjp.0707340.
28. Garnier P., Ducancel F., Ogawa T., Boulain J.-C., Goudey-Perrière F., Perrière C., Ménez A. Complete amino-acid sequence of the ?-subunit of VTX from venom of the stonefish (Synanceia verrucosa) as identified from cDNA cloning experiments. Biochim. Biophys. Acta. 1997;1337:1–5. doi: 10.1016/S0167-4838(96)00187-2. [
29. Poh C., Yuen R., Khoo H., Chung M., Gwee M., Gopalakrishnakone P. Purification and partial characterization of stonustoxin (lethal factor) from Synanceja horrida venom. Comp. Biochem. Physiol. B: 19.Comp. Biochem. 1991;99:793–798.
30. Ueda A., Suzuki M., Honma T., Nagai H., Nagashima Y., Shiomi K. Purification, properties and cDNA cloning of neoverrucotoxin (neoVTX), a hemolytic lethal factor from the stonefish Synanceia verrucosa venom. BBA-Gen. Subj. 2006;1760:1713–1722.
31. Ghadessy, F.J.; Chen, D.; Kini, R.M.; Chung, M.C.; Jeyaseelan, K.; Khoo, H.E.; Yuen, R. Stonustoxin is a novel lethal factor from stonefish (Synanceja horrida) venom cDNA cloning and characterization. J. Biol. Chem. 1996, 271, 25575–25581. 144.
32. Khoo, H.; Hon, W.; Lee, S.; Yuen, R. Effects of stonustoxin (lethal factor from Synanceja horrida venom) on platelet aggregation. Toxicon 1995, 33, 1033–1041. 86
32. Khoo, H.E.; Chen, D.; Yuen, R. Role of free thiol groups in the biological activities of stonustoxin, a lethal factor from stonefish (Synanceja horrida) venom. Toxicon 1998, 36, 469–476.
33. Chen, D.; Kini, R.; Yuen, R.; Khoo, H. Haemolytic activity of stonustoxin from stonefish (Synanceja horrida) venom: Pore formation and the role of cationic amino acid residues. Biochem. J. 1997, 325, 685–691.
34. Garnier, P.; Grosclaude, J.-M.; Goudey-Perrière, F.; Gervat, V.; Gayral, P.; Jacquot, C.; Perrière, C. Presence of norepinephrine and other biogenic amines in stonefish venom. J. Chromotogr. B: Biomed. 1996, 685, 364–369. 166
35. Khoo, H.E.; Chen, D.; Yuen, R. The role of cationic amino acid residues in the lethal activity of stonustoxin from stonefish (Synanceja horrida) venom. IUBMB Life 1998, 44, 643–646.
36. Yuen, R.; Cai, B.; Khoo, H. Production and characterization of monoclonal antibodies against stonustoxin from Synanceja horrida. Toxicon 1995, 33, 1557–1564. 148
37. Low, K.S.; Gwee, M.E.; Yuen, R.; Gopalakrishnakone, P.; Khoo, H. Stonustoxin: A highly potent endothelium-dependent vasorelaxant in the rat. Toxicon 1993, 31, 1471–1478.
38. Liew, H.; Khoo, H.; Moore, P.; Bhatia, M.; Lu, J.; Moochhala, S. Synergism between hydrogen sulfide (H2S) and nitric oxide (NO) in vasorelaxation induced by stonustoxin (SNTX), a lethal and hypotensive protein factor isolated from stonefish Synanceja horrida venom. Life Sci. 2007, 80, 1664–1668.
39. Colasante, C.; Meunier, F.A.; Kreger, A.S.; Molgó, J. Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom. Eur. J. Neurosci. 1996, 8, 2149–2156.
40. Sauviat, M.-P.; Meunier, F.A.; Kreger, A.; Molgó, J. Effects of trachynilysin, a protein isolated from stonefish (Synanceia trachynis) venom, on frog atrial heart muscle. Toxicon 2000, 38, 945–959.
41. Meunier, F.A.; Mattei, C.; Chameau, P.; Lawrence, G.; Colasante, C.; Kreger, A.S.; Dolly, J.O.; Molgó, J. Trachynilysin mediates SNARE-dependent release of catecholamines from chromaffin cells via external and stored Ca2+. J. Cell Sci. 2000, 113, 1119–1125.
42. Ouanounou, G.; Malo, M.; Stinnakre, J.; Kreger, A.S.; Molgó, J. Trachynilysin, a neurosecretory protein isolated from stonefish (Synanceia trachynis) venom, forms nonselective pores in the membrane of NG108–15 cells. J. Biol. Chem. 2002, 277, 39119–39127. 152
43. Andrich, F.; Carnielli, J.; Cassoli, J.; Lautner, R.; Santos, R.; Pimenta, A.; de Lima, M.; Figueiredo, S. A potent vasoactive cytolysin isolated from Scorpaena plumieri scorpionfish venom. Toxicon 2010, 56, 487–496.
44. Gomes, H.L.; Andrich, F.; Fortes-Dias, C.L.; Perales, J.; Teixeira-Ferreira, A.; Vassallo, D.V.; Cruz, J.S.; Figueiredo, S.G. Molecular and biochemical characterization of a cytolysin from the Scorpaena plumieri (scorpionfish) venom: Evidence of pore formation on erythrocyte cell membrane. Toxicon 2013, 74, 92–100.
45. Nagasaka, K.; Nakagawa, H.; Satoh, F.; Hosotani, T.; Yokoigawa, K.; Sakai, H.; Sakuraba, H.; Ohshima, T.; Shinohara, M.; Ohura, K. A novel cytotoxic protein, Karatoxin, from the dorsal spines of the redfin velvetfish, Hypodytes rubripinnis. Toxin Rev. 2009, 28, 260–265.
46. Shinohara, M.; Nagasaka, K.; Nakagawa, H.; Edo, K.; Sakai, H.; Kato, K.; Iwaki, F.; Ohura, K.; Sakuraba, H. A novel chemoattractant lectin, karatoxin, from the dorsal spines of the small scorpionfish Hypodytes rubripinnis. J. Pharmacol. Sci. 2010, 113, 414–417.
47. Hahn, S.; O’connor, J. An investigation of the biological activity of bullrout (Notesthes robusta) venom. Toxicon 2000, 38, 79–89.
48. Abe, T.; Sumatora, M.; Hashimoto, Y.; Yoshihara, J.; Shimamura, Y.; Fukami, J. Purification and properties of a cardioactive toxin, cardioleputin, from stonefish, Synanceja verrucosa J. Venom. Anim. Toxins 1996, 2, 135–149.
49. Chhatwal, I.; Dreyer, F. Isolation and characterization of dracotoxin from the venom of the greater weever fish Trachinus draco. Toxicon 1992, 30, 87–93.
50. Perriere, C.; Goudey-Perriere, F.; Petek, F. Purification of a lethal fraction from the venom of the weever fish, Trachinus vipera CV. Toxicon 1988, 26, 1222–1227.
51. Chhatwal, I.; Dreyer, F. Biological properties of a crude venom extract from the greater weever fish Trachinus draco. Toxicon 1992, 30, 77–85.
52. Karmakar, S.; Muhuri, D.; Dasgupta, S.; Nagchaudhuri, A.; Gomes, A. Isolation of a haemorrhagic protein toxin (SA-HT) from the Indian venomous butterfish (Scatophagus argus ) sting extract. Indian J. Exp. Biol. 2004, 42, 452–460.
53. De Santana Evangelista, K.; Andrich, F.; de Rezende, F.F.; Niland, S.; Cordeiro, M.N.; Horlacher, T.; Castelli, R.; Schmidt-Hederich, A.; Seeberger, P.H.; Sanchez, E.F. Plumieribetin, a fish lectin homologous to mannose-binding B-type lectins, inhibits the collagen-binding ?1?1 integrin. J. Biol. Chem. 2009, 284, 34747–34759.
54. Andrich, F.; Richardson, M.; Naumann, G.; Cordeiro, M.; Santos, A.; Santos, D.; Oliveira, J.; de Lima, M.; Figueiredo, S. Identification of C-type isolectins in the venom of the scorpionfish Scorpaena plumieri. Toxicon 2015, 95, 67–71.
55. Sosa-Rosales, J.I.; Piran-Soares, A.A.; Farsky, S.H.; Takehara, H.A.; Lima, C.; Lopes-Ferreira, M. Important biological activities induced by Thalassophryne maculosa fish venom. Toxicon 2005, 45, 155–161.
56. Lopes-Ferreira, M.; Magalhaes, G.S.; Fernandez, J.H.; Junqueira-de-Azevedo, I.D.L.M.; le Ho, P.; Lima, C.; Valente, R.H.; Moura-da-Silva, A.M. Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri. Biochimie 2011, 93, 971–980.
57. Komegae, E.N.; Ramos, A.D.; Oliveira, A.K.; de Toledo Serrano, S.M.; Lopes-Ferreira, M.; Lima, C. Insights into the local pathogenesis induced by fish toxins: Role of natterins and nattectin in the disruption of cell–cell and cell–extracellular matrix interactions and modulation of cell migration. Toxicon 2011, 58, 509–517.
58. Ramos, A.D.; Conceição, K.; Silva, P.I., Jr.; Richardson, M.; Lima, C.; Lopes-Ferreira, M. Specialization of the sting venom and skin mucus of Cathorops spixii reveals functional divrsification of the toxins. Toxicon 2012, 59, 651–665.
59. Auddy, B.; Muhuri, D.C.; Alam, M.I.; Gomes, A. A lethal protein toxin (toxin-PC) from the Indian catfish (Plotosus canius, Hamilton) venom. Nat. Toxins 1995, 3, 363–368. 140
60. Tamura S, Yamakawa M, Shiomi K. Purification, characterization and cDNA cloning of two natterin-like toxins from the skin secretion of oriental catfish Plotosus lineatus Toxicon. 2011 Oct
61. Primor N, Tu AT. Conformation of pardaxin, the toxin of the flatfish Pardachirus marmoratus. Biochim Biophys Acta. 1980 Dec 16;626(2):299-306.
62. Primor N, Lazarovici P, Pardachirus marmoratus (Red Sea flatfish) secretion and its isolated toxic fraction pardaxin: the relationship between hemolysis and ATPase inhibition. Toxicon. 1981;19(4):573-8. No abstract available.
63. Primor N. Pardaxin produces postjunctional muscle contraction in guinea-pig intestinal smooth muscle. Br J Pharmacol. 1984 May;82(1):43-9.
65. Shai Y, Fox J, Caratsch C, Shih YL, Edwards C, Lazarovici P. Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. FEBS Lett. 1988;242(1):161-6.
66. Shiomi K(1), Takamiya M, Yamanaka H, Kikuchi T, Suzuki Y .Toxins in the skin secretion of the oriental catfish (Plotosus lineatus): immunological properties and immunocytochemical identification of producing cells. Toxicon. 1988

67. Austin, L.; Gillis, R.; Youatt G., Stonefish venom: Some biochemical and chemical observations. Aust. J. Exp. Biol. Med. Sci. 1965, 43, 79–90.

68. Conceição, K.; Santos, J.M.; Bruni, F.M.; Klitzke, C.F.; Marques, E.E.; Borges, M.H.; Melo, R.L.; Fernandez, J.H.; Lopes-Ferreira, M. Characterization of a new bioactive peptide from Potamotrygon grorbignyi freshwater stingray venom. Peptides 2009, 30, 2191–2199.

69. Sri Balasubashini, M.; Karthigayan, S.; Somasundaram, S.; Balasubramanian, T.; Viswanathan, V.; Raveendran, P.; Menon, V.P. Fish venom (Pterios volitans) peptide reduces tumor 55.burden and ameliorates oxidative stress in Ehrlich’s ascites carcinoma xenografted mice. Bioorg. Med. Chem. Lett. 2006, 16, 6219–6225. 164

70. Carlisle, D. On the venom of the lesser weeverfish, Trachinus vipera. J. Mar. Biol. Assoc. U.K. 1962, 42, 155–162.
71. Hopkins, B.J.; Hodgson, W.C.; Sutherland, S.K. An in vitro pharmacological examination of venom from the soldierfish Gymnapistes marmoratus. Toxicon 1997, 35, 1101–1111.
72. Kaji T(1), Sugiyama N, Ishizaki S, Nagashima Y, Shiomi K. Molecular cloning of grammistins, peptide toxins from the soapfish Pogonoperca punctata, by hemolytic screening of a cDNA library. . Peptides. 2006 Dec;27(12):3069-76. Epub 2006 Oct 25.

73. Sugiyama N(1), Araki M, Ishida M, Nagashima Y, Shiomi K. Further isolation and characterization of grammistins from the skin secretion of the soapfish Grammistes sexlineatus. . Toxicon. 2005;45(5):595-601.

74. Garnier, P.; Grosclaude, J.-M.; Goudey-Perrière, F.; Gervat, V.; Gayral, P.; Jacquot, C.; Perrière, C. Presence of norepinephrine and other biogenic amines in stonefish venom. J. Chromotogr. B: Biomed. 1996, 685, 364–369.
75. Hopkins, B.J.; Hodgson, W.C.; Sutherland, S.K. Pharmacological studies of stonefish (Synanceja trachynis) venom. Toxicon 1994, 32, 1197–1210. 167
76. Kaji T(1), Sugiyama N, Ishizaki S, Nagashima Y, Shiomi K. Molecular cloning of grammistins, peptide toxins from the soapfish Pogonoperca punctata, by hemolytic screening of a cDNA library. Peptides. 2006;27(12):3069-76.

77. Sugiyama N, Araki M, Ishida M, Nagashima Y, Shiomi K. Further isolation and characterization of grammistins from the skin secretion of the soapfish Grammistes sexlineatus. . Toxicon. 2005 Apr;45(5):595-601.

78. Shiomi K(1), Igarashi T, Yokota H, Nagashima Y, Ishida M. Isolation and structures of grammistins, peptide toxins from the skin secretion of the soapfish Grammistes sexlineatus. Toxicon. 2000 38(1):91-103.

79. Lopes-Ferreira, M.; Emim, J.A.D.S.; Oliveira, V.; Puzer, L.; Cezari, M.H.; Araújo, M.D.S.; Juliano, L.; Lapa, A.J.; Souccar, C.; Moura-da-Silva, A.M. Kininogenase activity of Thalassophryne nattereri fish venom. Biochem. Pharmacol. 2004, 68, 2151–2157.
80. Conceição, K.; Konno, K.; Melo, R.L.; Marques, E.E.; Hiruma-Lima, C.A.; Lima, C.; Richardson, M.; Pimenta, D.C.; Lopes-Ferreira, M. Orpotrin: A novel vasoconstrictor peptide from the venom of the Brazilian Stingray Potamotrygon gr. orbignyi. Peptides 2006, 27, 3039–3046.
81. Conceição, K.; Santos, J.M.; Bruni, F.M.; Klitzke, C.F.; Marques, E.E.; Borges, M.H.; Melo, R.L.; Fernandez, J.H.; Lopes-Ferreira, M. Characterization of a new bioactive peptide from Potamotrygon gr. orbignyi freshwater stingray venom. Peptides 2009, 30, 2191–2199.
82. Magalhaes, G.; Lopes-Ferreira, M.; Junqueira-de-Azevedo, I.; Spencer, P.; Araújo, M.; Portaro, F.; Ma, L.; Valente, R.; Juliano, L.; Fox, J. Natterins, a new class of proteins with kininogenase activity characterized from Thalassophryne nattereri fish venom. Biochimie 2005, 87, 687–699.
83. Komegae, E.N.; Ramos, A.D.; Oliveira, A.K.; de Toledo Serrano, S.M.; Lopes-Ferreira, M.; Lima, C. Insights into the local pathogenesis induced by fish toxins: Role of natterins and nattectin in the disruption of cell–cell and cell–extracellular matrix interactions and modulation of cell migration. Toxicon 2011, 58, 509–517.
84. Magalhaes, G.; Junqueira-de-Azevedo, I.; Lopes-Ferreira, M.; Lorenzini, D.; Ho, P.; Moura-da-Silva, A. Transcriptome analysis of expressed sequence tags from the venom glands of the fish Thalassophryne nattereri. Biochimie 2006, 88, 693–699. 156
85. Ferreira, M.J.; Lima, C.; Lopes-Ferreira, M. Anti-inflammatory effect of Natterins, the major toxins from the Thalassophryne nattereri fish venom is dependent on TLR4/MyD88/PI3K signaling pathway. Toxicon 2014, 87, 54–67.
86. Poh, C.; Yuen, R.; Chung, M.; Khoo, H. Purification and partial characterization of hyaluronidase from stonefish (Synanceja horrida) venom. Comp. Biochem. Physiol. B: Comp. Biochem. 1992, 101, 159–163. 158
87. Ng, H.C.; Ranganathan, S.; Chua, K.L.; Khoo, H.E. Cloning and molecular characterization of the first aquatic hyaluronidase, SFHYA1, from the venom of stonefish (Synanceja horrida). Gene 2005, 346, 71–81.
88. Sugahara, K.; Yamada, S.; Sugiura, M.; Takeda, K.; Yuen, R.; Khoo, H.; Poh, C. Identification of the reaction products of the purified hyaluronidase from stonefish (Synanceja horrida) venom. Biochem. J. 1992, 283, 99–104.
89. Madokoro, M.; Ueda, A.; Kiriake, A.; Shiomi, K. Properties and cDNA cloning of a hyaluronidase from the stonefish Synanceia verrucosa venom. Toxicon 2011, 58, 285–292.
90. Magalhães, M.R. A hyaluronidase from Potamotrygon motoro (freshwater stingrays) venom: Isolation and characterization. Toxicon 2008, 51, 1060–1067.
91. Kiriake, A.; Madokoro, M.; Shiomi, K. Enzymatic properties and primary structures of hyaluronidases from two species of lionfish (Pterois antennata and Pterois volitans). Fish Physiol. Biochem. 2014, 40, 1043–1053. 109
92. Cohen, A.S.; Olek, A.J. An extract of lionfish (Pterois volitans) spine tissue contains acetylcholine and a toxin that affects neuromuscular transmission. Toxicon 1989, 27, 1367–1376. 75
93. Carlisle, D. On the venom of the lesser weeverfish, Trachinus vipera. J. Mar. Biol. Assoc. U.K. 1962, 42, 155–162
94. Garnier, P.; Grosclaude, J.-M.; Goudey-Perrière, F.; Gervat, V.; Gayral, P.; Jacquot, C.; Perrière, C. Presence of norepinephrine and other biogenic amines in stonefish venom. J. Chromotogr. B: Biomed. 1996, 685, 364–369.
95. Hopkins, B.J.; Hodgson, W.C.; Sutherland, S.K. Pharmacological studies of stonefish (Synanceja trachynis) venom. Toxicon 1994, 32, 1197–1210.
96. Nair, M.; Cheung, P.; Leong, I.; Ruggieri, G.D. A non-proteinaceous toxin from the venomous spines of the lionfish Pterois volitans (Linnaeus). Toxicon 1985, 23, 525–527.
97. Cohen, A.S.; Olek, A.J. An extract of lionfish (Pterois volitans) spine tissue contains acetylcholine and a toxin that affects neuromuscular transmission. Toxicon 1989, 27, 1367–1376.
98. Nagasaka, K.; Nakagawa, H.; Satoh, F.; Hosotani, T.; Yokoigawa, K.; Sakai, H.; Sakuraba, H.; Ohshima, T.; Shinohara, M.; Ohura, K. A novel cytotoxic protein, Karatoxin, from the dorsal spines of the redfin velvetfish, Hypodytes rubripinnis. Toxin Rev. 2009, 28, 260–265. 133
99. Shinohara, M.; Nagasaka, K.; Nakagawa, H.; Edo, K.; Sakai, H.; Kato, K.; Iwaki, F.; Ohura, K.; Sakuraba, H. A novel chemoattractant lectin, karatoxin, from the dorsal spines of the small scorpionfish Hypodytes rubripinnis. J. Pharmacol. Sci. 2010, 113, 414–417. 154
100. Huang TC, Lee JF, Chen JY.Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs. 2011;9(10):1995-2009. doi: 10.3390/md9101995. Epub 2011 Oct 19.

101. Fitzgerald, G.J. Analysis of 24 cases of bullrout envenomation. Emerg. Med. 1993, 5, 199–200.
102. Kizer, K.W.; McKinney, H.E.; Auerbach, P.S. Scorpaenidae envenomation: A five-year poison center experience. JAMA 1985, 253, 807–810.
103. Lee, J.; Teoh, L.; Leo, S. Stonefish envenomations of the hand-a local marine hazard: A series of 8 cases and review of the literature. Ann. Acad. Med. Singap. 2004, 33, 515–520. Toxins 2015, 7 1523
104. Nistor, A.; Giè, O.; Biegger, P.; Fusetti, C.; Lucchina, S. Surgical vacuum-assisted closure for treatment of dramatic case of stonefish envenomation. Chin. J. Traumatol. 2010, 13, 250–252.
105. Haddad, V., Jr.; Martins, I.A. Frequency and gravity of human envenomations caused by marine catfish (suborder siluroidei): A clinical and epidemiological study. Toxicon 2006, 47, 838–843. 40
106. Chhatwal, I.; Dreyer, F. Isolation and characterization of dracotoxin from the venom of the greater weever fish Trachinus draco. Toxicon 1992, 30, 87–93.
107. Khoo, H.; Hon, W.; Lee, S.; Yuen, R. Effects of stonustoxin (lethal factor from Synanceja horrida venom) on platelet aggregation. Toxicon 1995, 33, 1033–1041.
108. Shiomi, K.; Hosaka, M.; Fujita, S.; Yamanaka, H.; Kikuchi, T. Venoms from six species of marine fish: Lethal and hemolytic activities and their neutralization by commercial stonefish antivenom. Mar. Biol. 1989, 103, 285–289. 52
109. Kiriake, A.; Suzuki, Y.; Nagashima, Y.; Shiomi, K. Proteinaceous toxins from three species of scorpaeniform fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis): Close similarity in properties and primary structures to stonefish toxins. Toxicon 2013, 70, 184–193.
110. Grotendorst, G.R.; Hessinger, D.A. Purification and partial characterization of the phospholipase A 2 and co-lytic factor from sea anemone (Aiptasia pallida) nematocyst venom. Toxicon 1999, 37, 1779–1796.
111. Valdez-Cruz, N.A.; Batista, C.V.; Possani, L.D. Phaiodactylipin, a glycosylated heterodimeric phospholipase A2 from the venom of the scorpion Anuroctonus phaiodactylus. Eur. J. Biochem. 2004, 271, 1453–1464.
112. Gul, S.; Smith, A.D. Haemolysis of intact human erythrocytes by purified cobra venom phospholipase A 2 in the presence of albumin and Ca 2+. BBA-Biomembr. 1974, 367, 271–281.
113. Sivan, G.; Venketesvaran, K.; Radhakrishnan, C. Biological and biochemical properties of Scatophagus argus venom. Toxicon 2007, 50, 563–571.
114. Lopes-Ferreira, M.; Moura-da-Silva, A.M.; Piran-Soares, A.A.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M.A.; Farsky, S.H. Hemostatic effects induced by Thalassophryne nattereri fish venom: A model of endothelium-mediated blood flow impairment. Toxicon 2002, 40, 1141–1147. 93
115. Han Han , Kate Baumann , Nicholas R Casewell , Syed A Ali , James Dobson , Ivan Koludarov , Jordan Debono et al, The Cardiovascular and Neurotoxic Effects of the Venoms of Six Bony and Cartilaginous Fish Species Toxins (Basel) , 9 (2) 2017 Feb 16.
116. Auddy B1, Alam MI, Gomes A. Pharmacological actions of the venom of the Indian catfish (Plotosus canius Hamilton). Toxicon. 2015
117. Sarmiento BE, Rangel M, Gonçalves JC, Pereira L, Rego S, Campos LA, Haddad V Jr, Mortari MR, Schwartz EF. First report of the characterization of the pathophysiological mechanisms caused by the freshwater catfish Pimelodus maculatus (order: Siluriformes). Toxicon. 2015

118. Barthó L, Sándor Z, Bencsik T. Effects of the venom of the brown bullhead catfish (Ameiurus nebulosus) on isolated smooth muscles. Acta Biol Hung. 2018
119. Khoo, H.; Yuen, R.; Poh, C.; Tan, C. Biological activities of Synanceja horrida (stonefish) venom. Nat. Toxins 1992, 1, 54–60.
120. Ramos AD, Conceição K, Silva PI Jr, Richardson M, Lima C, Lopes-Ferreira M. Specialization of the sting venom and skin mucus of Cathorops spixii reveals functional diversification of the toxins. Toxicon. 2012

121. Junqueira, M.E.P.; Grund, L.Z.; Orii, N.M.; Saraiva, T.C.; de Magalhães Lopes, C.A.; Lima, C.; Lopes-Ferreira, M. Analysis of the inflammatory reaction induced by the catfish (Cathorops spixii) venoms. Toxicon 2007, 49, 909–919.
122. Bo J, Yang Y, Zheng R, Fang C, Jiang , Liu J, Chen M, Hong F, Bailey C, Segner H, Wang K. Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. Fish Shellfish Immunol. 2019;93:1007-1017.

123. Kim CH, Kim EJ, Nam YK. Subfunctionalization and evolution of liver-expressed antimicrobial peptide 2 (LEAP2) isoform genes in Siberian sturgeon (Acipenser baerii), a primitive chondrostean fish species.
124. Pal R, Barenholz Y, Wagner RR. Transcription of vesicular stomatitis virus activated by pardaxin, a fish toxin that permeabilizes the virion membrane. J Virol. 1981;39(2):641-5
125. Carrijo, L.C.; Andrich, F.; de Lima, M.E.; Cordeiro, M.N.; Richardson, M.; Figueiredo, S.G. Biological properties of the venom from the scorpionfish Scorpaena plumieri and purification of a gelatinolytic protease. Toxicon 2005, 45, 843–850.
126. Garnier, P.; Goudey-Perriere, F.; Breton, P.; Dewulf, C.; Petek, F.; Perriere, C. Enzymatic properties of the stonefish (Synanceia verrucosa) Bloch and Schneider, 1801) venom and purification of a lethal, hypotensive and cytolytic factor. Toxicon 1995
127. Barbaro, K.C.; Lira, M.S.; Malta, M.B.; Soares, S.L.; Garrone Neto, D.; Cardoso, J.L.; Santoro, M.L.; Haddad Junior, V. Comparative study on extracts from the tissue covering the stingers of freshwater (Potamotrygon falkneri) and marine (Dasyatis guttata) stingrays. Toxicon 2007, 50, 676–687.
128. Monteiro-dos-Santos, J.; Conceição, K.; Seibert, C.S.; Marques, E.E.; Silva, P.I., Jr.; Soares, A.B.; Lima, C.; Lopes-Ferreira, M. Studies on pharmacological properties of mucus and sting venom of Potamotrygon cf. henlei. Int. Immunopharmacol. 2011, 11, 1368–
129. Lopes-Ferreira, M.; Barbaro, K.; Cardoso, D.; Moura-da-Silva, A.; Mota, I. Thalassophryne nattereri fish venom: Biological and biochemical characterization and serum neutralization of its toxic activities. Toxicon 1998, 36, 405–410.
130. Sosa-Rosales, J.I.; Piran-Soares, A.A.; Farsky, S.H.; Takehara, H.A.; Lima, C.; Lopes-Ferreira, M. Important biological activities induced by Thalassophryne maculosa fish venom. Toxicon 2005, 45, 155–161. 101
131. Balasubashini, M.S.; Karthigayan, S.; Somasundaram, S.; Balasubramanian, T.; Viswanathan, P.; Menon, V.P. In vivo and in vitro characterization of the biochemical and pathological changes induced by lionfish (Pterios volitans) venom in mice. Toxicol. Mech. Method. 2006, 16, 525–531.
132. Cameron, A.M.; Surridge, J.; Stablum, W.; Lewis, R.J. A crinotoxin from the skin tubercle glands of a stonefish (Synanceia trachynis). Toxicon 1981, 19, 159–170.
133. Sivan, G.; Venketasvaran, K.; Radhakrishnan, C. Characterization of biological activity of Scatophagus argus venom. Toxicon 2010, 56, 914–925. 105
134. Hopkins, B.J.; Hodgson, W.C. Enzyme and biochemical studies of stonefish (Synanceja trachynis) and soldierfish (Gymnapistes marmoratus) venoms. Toxicon 1998, 36, 791–793.
135. De Araújo Tenório, H.; da Costa Marques, M.E.; Machado, S.S.; Pereira, H.J.V. Angiotensin processing activities in the venom of Talassophryne nattereri. Toxicon 2015.
136. Ghafari, S.M.; Jamili, S.; Bagheri, K.P.; Ardakani, E.M.; Fatemi, M.R.; Shahbazzadeh, F.; Shahbazzadeh, D. The first report on some toxic effects of green scat, Scatophagus argus an Iranian Persian Gulf venomous fish. Toxicon 2013, 66, 82–87
137. Kiriake, A.; Madokoro, M.; Shiomi, K. Enzymatic properties and primary structures of hyaluronidases from two species of lionfish (Pterois antennata and Pterois volitans). Fish Physiol. Biochem. 2014,
138. Lopes-Ferreira, M.; Gomes, E.M.; Bruni, F.M.; Ferreira, M.J.; Charvet, P.; Lima, C. First report of interruption of mast cell degranulation and endothelial cells activation by anti-inflammatory drugs controlling the acute response provoked by Pseudoplatystoma fasciatum fish venom. Toxicon 2014, 90, 237–248.
139. Kimura, L.F.; Prezotto-Neto, J.P.; Antoniazzi, M.M.; Jared, S.G.; Santoro, M.L.; Barbaro, K.C. Characterization of inflammatory response induced by Potamotrygon motoro stingray venom in mice. Exp. Biol. Med. 2014, 239, 601–609.
140. Lima, C.; Clissa, P.C.B.; Piran-Soares, A.A.; Tanjoni, I.; Moura-da-Silva, A.M.; Lopes-Ferreira, M. Characterisation of local inflammatory response induced by Thalassophryne nattereri fish venom in a mouse model of tissue injury. Toxicon 2003, 42, 499–507. Toxins 2015, 7 1528
141. Ishizuka, E.K.; Ferreira, M.J.; Grund, L.Z.; Coutinho, E.M.M.; Komegae, E.N.; Cassado, A.A.; Bortoluci, K.R.; Lopes-Ferreira, M.; Lima, C. Role of interplay between IL-4 and IFN-? in the in regulating M1 macrophage polarization induced by Nattectin. Int. Immunopharmacol. 2012, 14
142. Magalhães, M.R. A hyaluronidase from Potamotrygon motoro (freshwater stingrays) venom: Isolation and characterization. Toxicon 2008, 51, 1060–1067.
143. Saraiva, T.C.; Grund, L.Z.; Komegae, E.N.; Ramos, A.D.; Conceicao, K.; Orii, N.M.; Lopes-Ferreira, M.; Lima, C. Nattectin a fish C-type lectin drives Th1 responses in vivo: Licenses macrophages to differentiate into cells exhibiting typical DC function. Int. Immunopharmacol. 2011, 11, 1546–1556.
144. Grund, L.Z.; Komegae, E.N.; Lopes-Ferreira, M.; Lima, C. IL-5 and IL-17A are critical for the chronic IgE response and differentiation of long-lived antibody-secreting cells in inflamed tissues. Cytokine 2012, 59, 335–351.
145. Grund, L.Z.; Lopes-Ferreira, M.; Lima, C. The hierarchical process of differentiation of long-lived antibody-secreting cells is dependent on integrated signals derived from antigen and IL-17A. PLoS One 2013, 8, e74566.
146. Grund, L.Z.; Souza, V.M.O.; Faquim-Mauro, E.L.; Lima, C.; Lopes-Ferreira, M. Experimental immunization with Thalassophryne nattereri fish venom: Striking IL-5 production and impaired of B220+ cells. Toxicon 2006, 48, 499–508.
147. Komegae, E.N.; Grund, L.Z.; Lopes-Ferreira, M.; Lima, C. The longevity of Th2 humoral response induced by proteases natterins requires the participation of long-lasting innate-like B cells and plasma cells in spleen. PLoS ONE 2013, 8, e67135.
148. Komegae, E.N.; Grund, L.Z.; Lopes-Ferreira, M.; Lima, C. TLR2, TLR4 and the MyD88 signaling are crucial for the in vivo generation and the longevity of long-lived antibody-secreting cells. PLoS One 2013, 8, e71185.
149. Skeie, E. Toxin of the Weeverfish (Trachinus draco). Acta Pharmacol. Toxicol. 1962.
150. Austin, L.; Gillis, R.; Youatt G., Stonefish venom: Some biochemical and chemical observations. Aust. J. Exp. Biol. Med. Sci. 1965, 43, 79–90.
151. Gisha SivaneFish venom: pharmacological features and biological significance.(2009)
152. Church JE and Hodgson The pharmacological activity of fish venoms.(2002)
153. Waring MJ,Arrowsmith J,Leach AR,Leeson PD,Mandrell S,Owen RM,Pairaudeau G,Pennie WD,Pickett SD,Wang J,Wallace O,Weir A, An analysis of drug candidates from four major pharmaceutical companies.Nat Rev Drug Discov.2015
154. Cornet C,Calzolari S,Minana-Prieto R,Dyballa S,van Doornmalen E,Rutjes H,Savy T,D Amico D,Terriete J, An innovative approach to Adress organ drug tocixty using Zebra fish.(2017)
155. John H.Tibbetts.Turning Toxins into Treatments: Researchers use new tools to identify therapeutic ingredients in animal venom.(2015)
156. Fry BG, et al. 2015. Seeing the woods for the trees: Understanding venom evolution as a guide for biodiscovery. Pages 1–36 in King, GF. Venoms to Drugs:
157. Venom as a Source for the Development of Human Therapeutics. Royal Society of Chemistry. doi:10.1039/9781849737876–00001
158. Olivera BM. 1997. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Molecular Biology of the Cell 8: 2101–2109. doi:10.1091/mbc.8.11.2101
159. Siddall M, Gavin M. 2014. Venom: Sinister Species with Deadly Consequences. American Museum of Natural History.
160. Zhang X, Han C, Chen S, Li L, Zong J, Zeng J, Mei G. Response Surface Methodology for the Optimization of Ultrasound-Assisted Extraction of Tetrodotoxin from the Liver of Takifugu pseudommus.

161. Zhao XM, Chu XH, Liu Y, Liu QN, Jiang SH, Zhang DZ, Tang BP, Zhou CL, Dai LS(6) A myeloid differentiation factor 88 gene from yellow catfish Pelteobagrus fulvidraco and its molecular characterization in response to polyriboinosinicpolyribocytidylic acid and lipopolysaccharide challenge.(2018)

162. Barthó L, Sándor Z, Bencsik T. Effects of the venom of the brown bullhead catfish (Ameiurus nebulosus) onisolated smooth muscles.(2018)

163. Lahiani A, Yavin E, Lazarovici P. The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals.(2017)

164. Memar B, Jamili S, Shahbazzadeh D, Bagheri KP.The first report on coagulation and phospholipase A2 activities of Persian Gulfl lionfish, Pterois russelli, an Iranian venomous fish.(2016)

165. Komegae EN, Souza TA, Grund LZ, Lima C, Lopes-Ferreira M.Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS One. 2017 .
166. Lopes-Ferreira, M.; Moura-da-Silva, A.; Mota, I.; Takehara, H. Neutralization of Thalassophryne nattereri (niquim) fish venom by an experimental antivenom. Toxicon 2000,
167. Piran-Soares, A.A.; Souza, V.M.O.; Fonseca, L.A.; Lima, C.; Lopes-Ferreira, M. Neutralizing antibodies obtained in a persistent immune response are effective against deleterious effects induced by the Thalassophryne nattereri fish venom. Toxicon 2007, 49, 920–930.
Statistics
13 Views | Downloads
How to Cite
Upadhyay, R. K. “The FISH VENOM TOXINS: NATURAL SOURCE OF PHARMACEUTICALS AND THERAPEUTIC AGENTS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 12, no. 11, Sept. 2020, https://innovareacademics.in/journals/index.php/ijpps/article/view/38215.
Section
Review Article(s)