• SIMRAN SHARMA Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur
  • RAVI KANT UPADHYAY Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur


The present review article explains the salient features of hornet venom toxins, their physiological, biological and pharmacological effect on animals and man. Hornets sting very fast and inflict venom, which is more dangerous than those of bees. Hornet venom contains both proteinaceous and non-proteinaceous peptides i.e. scapin, adolapin, mellitin, mastoparans and enzymes, mainly phospholipase and hyaluronidase, which show multiple biological effects i.e. cytolytic, hemotoxic, neuro-inhibitor, anticancer, anti-parasitic, immune hypersensitive, inflammatory, antimicrobial and anti-insect activities. Hornet stings are more painful to humans than typical wasp stings because hornet venom contains a large amount (5%) of acetylcholine. Hornet toxin components interact with receptors, ion channels and gated channels and affect the permeability functions of cells. Heavy envenomation shows quick pathophysiological lethal effects in man and pet. This article emphasizes the use of various hornet venom components for the production of disease-modifying anti-rheumatic and analgesic, anticancer drugs and insecticides. Hornet venom allergens could be used to prepare the rational design of component-resolved diagnosis of allergy and venom immunotherapy of inflicting patients.

Keywords: Hornets stings, Venom and toxin, Anticancer activity, Anti-parasitic, Immune hypersensitivity activities


Download data is not yet available.


1. Warrell DA. Venomous bites, stings, and poisoning: an update. Infect Dis Clin North Am 2019;33:17-38.
2. Archer ME. Taxonomy of the sylvestris group (Hymenoptera: Vespidae, Dolichos vespula) with the introduction of a new name and notes on distribution. Entomological Scandinavica 1981;12:187–93.
3. Dos Santos Pinto JRA, Perez Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social hymenoptera venoms. Toxicon 2018;148:172-96.
4. Pessoa WFB, Silva LCC, De Oliveira Dias, L Delabie. CC analysis of protein composition and bioactivity of Neoponera villosa venom (Hymenoptera: Formicidae. Int J Mol Sci 2016;17:513.
5. Liu Z, Chen S, Zhou Y, Xie C, Zhu B, Zhu H, et al. Deciphering the venomictranscriptome of killer-wasp Vespa velutina. Sci Rep 2015;5:9454.
6. Kularatne K, Kannangare T, Jayasena A, Jayasekera A, Waduge R, Weerakoon K, et al. Fatal acute pulmonary oedema and acute renal failure following multiple wasp/hornet (Vespa affinis) stings in Sri Lanka: two case reports. J Med Case Rep 2014;8:188.
7. Baptista Saidemberg NB, Saidemberg DM, Palma MS. Profiling the peptidome of the venom from the social wasp Agelaia pallipes pallipes. J Proteomics 2011;74:2123-37.
8. Brigatte P, Cury Y, de Souza BM, Baptista Saidemberg NB, Saidemberg DM, Gutierrez VP, et al. Hyperalgesic and edematogenic effects of peptides isolated from the venoms of honeybee (Apis mellifera) and neotropical social wasps (Polybiapaulista and Protonectarinasylveirae). Amino Acids 2011;40:101-11.
9. Diaz JH. The evolving global epidemiology, syndromic classification, management, and prevention of caterpillar envenoming. Am J Trop Med Hyg 2005;72:347-57.
10. Petricevich VL. Cytokine and nitric oxide production following severe envenomation. Curr Drug Targets Inflamm Allergy 2004;3:325-32.
11. Huicab Uribe MA, Verdel Aranda K, Martinez Hernandez A, Zamudio FZ, Jimenez Vargas JM, Lara Reyna J. Molecular composition of the paralyzing venom of three solitary wasps (Hymenoptera: Pompilidae) collected in southeast mexico. Toxicon 2019;168:98-102.
12. Alvarado G, Holland SR, DePerez-Rasmussen J, Jarvis BA, Telander T, Wagner N, et al. Bioinformatic analysis suggests potential mechanisms underlying parasitoid venom evolution and function. Genomics 2019;112;1096-104.
13. Elias LG, Silva DB, Silva R, Peng YQ, Yang DR, Lopes NP, et al. A comparative venomic fingerprinting approach reveals that galling and non-galling fig wasp species have different venom profiles. PLoS One 2018;13:e0207051.
14. Catania KC. How not to be turned into a zombie. Catania KC. Brain Behav Evol 2018;92:32-46.
15. Hider RC, Ragnarsson U. A comparative structural study of apamin and related bee venom peptides. Biochim Biophys Acta 1981;667:197-208.
16. Edstrom A. Venomous and poisonous animals, Krieger Publishing Company, Malabar; 1992.
17. Hoffman DR. Hymenoptera venom proteins. J Nat Toxins 1996;2:169-86.
18. Lima P RM, Brochetto Braga MR, Chaud Neto J. Proteolytic activity of africanized honeybee (Apismellifera: hymenoptera, Apidae) venom. J Venom Anim Toxins 2000;6:64-76.
19. Haim B, Rimon A, Ishay JS, Rimon S. Purification, characterization and anticoagulant activity of a proteolytic enzyme from Vespaorientalis venom. Toxicon 1999;37:825-9.
20. Schmidt JO. Venoms of the hymenoptera. Piek T. ed. Academic Press: London; 1986. p. 425-508.
21. Sousa JRF, Monteiro RQ, Castro HC, Zingali RB. Proteolytic action of Bothropsjararaca venom upon its own constituents. Toxicon 2001;39:787-92.
22. Hoffman DR, Jacobson RS. Allergens in hymenoptera venom XXVII: bumblebee venom allergy and allergens. J Allergy Clin Immunol 1996;97:812-21.
23. Koh Y, Chung K, Kim D. Biochemical characterization of a thrombin-like enzyme and a fibrinolyticserine protease from snake (Agkistrodon saxatilis) venom. Toxicon 2001;39:555-60.
24. Michelutti KB, Antonialli Junior WF, Batistote M, Cardoso CA. Chemical signatures in the developmental stages of exigua. Genet Mol Res 2016;15:gmr7586.
25. Ho CL, Ko JL. Hornetin: the lethal protein of the hornet (Vespa havitrsus) venom. FEBS Lett 1986;209:18-22.
26. Humblet Y, Sonnet J, Van Y, Persele de Strihou C. Bee sting and acute tubular necrosis. Nephron 1982;31:187-8.
27. Schumacher MJ, Schmidt JO, Egen NB, Lowry JE. Quantity, analysis, and lethality of European-and Africanized honey bee venoms. Am J Trop Med Hyg 1990;3:79-86.
28. Youloten LJF, Atkinson BA, Lee TH. The incidence and nature of adverse reactions to injection immunotherapy in bee and wasp venom allergy. Clin Exp Allergy 1995;25:159-65.
29. Sherman R. What physicians should know about Africanized honeybees. West J Med 1995;163:541-6.
30. Schmidt JO. Toxicology of venoms from the honeybee genus Apis. Toxicon 1995;33:917-27.
31. Golden DB. Insect sting allergy and venom immunotherapy. Ann Allergy Asthma Immunol 2006;96:16-21.
32. Sasvary T, Mueller U. Deaths from insect stings in switzerland 1978-1987. Schweizerische Medizinische Wochenschrifit 1994;124:1887-94.
33. Jones RG, Corteling RL, Bhogal G, Landon J. A novel Fab-based anti-venom for the treatment of mass bee attacks. Am J Trop Med Hyg 1999;61:361-6.
34. Jeannin P, Lecoanet S, Delneste Y, Gauchat JF, Bonnefoy JY. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol 1998;160:3555-61.
35. Paul BR, Jacob GL, Yunginger JW, Gleich GJ. Comparison of binding of IgE and IgG antibodies to honeybee venom phospholipase A. J Immunol 1978;120:1917-23.
36. Kemeny DM, Dalton N, Lawrence AJ, Pearce FL, Vernon CA. The purification and characterisation of hyaluronidase from the venom of the honey bee, Apismellifera. Eur J Biochem 1984;139:217-23.
37. Neuman W, Habermann E, Amend G, Banks BEC, Shipolini RA. Venoms of hymenoptera: biochemical, pharmacological and behavioral aspects. Peak T. ed. Academy Press: London; 1986;3:29-16.
38. Schumacher MJ, Schmidt JO, Egen NB, Lowry JE. Quantity, analysis, and lethality of European and Africanized honey bee venoms. Am J Trop Med Hyg 1990;43:79-86.
39. Habermann E. Bee and wasp venoms. Science 1972;177:314-22.
40. Winston ML. The Africanized “killer” bee: biology and public health. Q J Med 1994;87:263-7.
41. Kolecki P. Delayed toxic reaction following massive bee envenomation. Ann Emerg Med 1999;33:114-6.
42. Hossen MS, Shapla UM, Gan SH, Khalil MI. Impact of bee venom enzymes on diseases and immune responses. Molecules 2017;22:25.
43. Welton RE, Williams DJ, Liew D. Injury trends from envenoming in Australia, 2000 2013. Intern Med J 2017;47:170-6.
44. Liu X, Chen D, Xie L, Zhang R. Effect of honeybee venom on proliferation of K1735M2 mouse melanoma cells in vitro and growth of murine B16 melanomas in vitro. J Pharm Pharmacol 2002;54:1083-9.
45. Kularatne SA, Raveendran S, Edirisinghe J, Karunaratne I, Weerakoon K. First reported case of fatal stinging by the large carpenter bee Xylocopatranquebarica. Wilderness Environ Med 2016;27:2625.
46. Kannangare T. GluN2A-/-mice lack bidirectional synaptic plasticity in the dentate gyrus and perform poorly on spatial pattern separation tasks. Cereb Cortex 2015;25:2102-13.
47. Dos santos JA, DE Azevedo Duarte L. Otero IV production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine derived fungi. Enzymemicrobtechnol 2010;46:32-7.
48. Perez Riverol A, Dos Santos Pinto JRA, Lasa AM, Palma MS, Brochetto Braga MR. J Proteomics 2017;161:88-103.
49. Orsolic N. Bee venom in cancer therapy. Cancer Metastasis Rev 2012;31:173–94.
50. Hackethal A, Schmidt K. Bee venom therapy, bee venom acupuncture of apiculture: what is the evidence behind the various health claims? Am Bee J 2005;145:665–8.
51. Lee WR, Pak SC, Park KK. The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins (Basel) 2015;7:4758-72.
52. Heinen TE, AB Gorini da Veiga. Arthropoda venoms and cancer. Toxicon 2011;57:497-11.
53. Kachel HS, Buckingham SD, Sattelle DB. Insect toxins-selective pharmacological tools and drug/chemical leads. Curr Opin Insect Sci 2018;30:93-8.
54. Lee JA, Son MJ, Choi J, Jun JH, Kim JI, Lee MS. Bee venom acupuncture for rheumatoid arthritis: A systematic review of randomized clinical trials. Br Med J Open 2014;4:e006140.
55. Seo BK, Lee JH, Sung WS, Song EM, Jo DJ. Bee venom acupuncture for the treatment of chronic low back pain: study protocol for a randomized, double-blinded, sham-controlled trial. Trials 2013;14:16.
56. Seo BK, Lee JH, Kim PK, Baek YH, Jo DJ, Lee S. Bee venom acupuncture, NSAIDs or combined treatment for chronic neck pain: study protocol for a randomized, assessor-blind trial. Trials 2014;15:132.
57. Rueff F, Mosbech H, Bonifazi F, Oude Elberink JNG. EAACI interest group on insect venom hypersensitivity diagnosis of hymenoptera venom allergy. Allergy 2005;60:1339–49.
58. Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Biosci Rep 2007;27:189–23.
59. Damianoglou A, Rodger A, Pridmore C, Dafforn TR, Mosely JA, Sanderson JM, et al. The synergistic action of melittin and phospholipase A2 with lipid membranes: development of linear dichroism for membrane-insertion kinetics. Protein Pept Lett 2010;17:1351–62.
60. Vila Farres X, Giralt E, Vila J. Update of peptides with antibacterial activity. Curr Med Chem 2012;19:6188–98.
61. Blondelle SE, Houghten RA. Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 1991;30:4671–8.
62. Dempsey CE. The actions of melittin on membranes. Biochim Biophys Acta 1990;1031:143–61.
63. Boman HG, Wade D, Boman IA, Wahlin B, Merrifield RB. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett 1989;259:103–6.
64. Merrifield RB, Juvvadi P, Andreu D, Ubach J, Boman A, Boman HG. Retro and retroenantio analogs of cecropin-melittin hybrids. Proc Natl Acad Sci USA 1995;92:3449–53.
65. Merrifield RB, Wade D, Boman HG. Antibiotic peptides containing D-amino acids. US5585353A; 1996.
66. Anju G, Reetu G, Sudarshan K. Hanbook of research on diverse applications of nanotechnology in biomedicine, chemistry, and engineering. Soni, Shivani: Hershey PA, USA; 2015.
67. Stockwell VO, Duffy B. Use of antibiotics in plant agriculture. Rev Sci Tech 2012;31:199–21079.
68. Badosa E, Ferre R, Planas M, Feliu L, Besalu E, Cabrefiga J, et al. A library of linear undecapeptides with bactericidal activity against phyto-pathogenic bacteria. Peptides 2007;28:2276–85.
69. Rubner MF, Yang SY, Qiu Y, Lynn C, Lally JM. Method for making medical devices having antimicrobial coatings thereon. US20140112994. 2014. Toxins 2015;7:1126-50.
70. Baghian A, Jaynes J, Enright F, Kousoulas KG. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 1997;18:177–83.
71. Wachinger M, Saermark T, Erfle V. Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett 1992;309:235–41.
72. Hagenbucher S, Eisenring M, Meissle M, Romeis J. Interaction of transgenic and natural insect resistance mechanisms against Spodopteralittoralis in cotton. Pest Manag Sci 2017;73:1670-8.
73. Ariane F Lacerda, Patrícia B Pelegrini, Daiane M de Oliveira, Erico AR Vasconcelos, Maria F Grossi-de-Sa. Anti-parasitic peptides from arthropods and their application in drug therapy. Front Microbiol 2016;7:91.
74. Elias Ferreira SabiaJunior, Luis Felipe Santos Menezes, Israel Flor Silva de Araujo, Elisabeth Ferroni Schwartz. Natural occurrence in venomous arthropods of antimicrobial peptides active against protozoan parasites. Toxins (Basel) 2019;11:563.
75. Victoria Carter, Ann Underhill, Ibrahima Baber, Lakamy Sylla, Mounirou Baby, Isabelle Larget Thiery, Agnes Zettor, et al., Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog 2013. https://doi.org/10.1371/journal.ppat.1003790
76. Nuno Vale, Luisa Aguiar, Paula Gomes. Anti-microbial peptides: a new class of antimalarial drugs? Front Pharmacol 2014;5:275.
77. Moreau SJ, Asgari S. Venom proteins from parasitoid wasps and their biological functions. Toxins (Basel) 2015;7:2385-412.
78. Dotimas EM, Hamid KR, Hider RC, Ragnarsson U. Isolation and structure analysis of bee venom mast cell degranulating peptide. Biochim Biophys Acta 1987;911:285–93.
79. Ziai MR, Russek S, Wang HC, Beer B, Blume AJ. Mast cell degranulating peptide: a multi-functional neurotoxin. J Pharm Pharmacol 1990;42:457–61.
80. Sharma JN. Basic and clinical aspects of bradykinin receptor antagonists. Prog Drug Res 2014;69:1–14.
81. Shkenderov S, Koburova K. Adolapin-a newly isolated analgetic and anti-inflammatory polypeptide from bee venom. Toxicon 1982;20:317–21.
82. Kitamura H, Yokoyama M, Akita H, Matsushita K, Kurachi Y, Yamada M. Tertiapin potently and selectively blocks muscarinic K+channels in rabbit cardiac myocytes. J Pharmacol Exp Ther 2000;293:196–205.
83. Vlasak R, Kreil G. Nucleotide sequence of cloned cDNAs coding for preprosecapin, a major product of queen-bee venom glands. Eur J Biochem 1984;145:279–82.
84. Meng Y, Yang XX, Zhang JL, Yu DQ. A novel peptide from Apismellifera and solid-phase synthesis of its analogue. Chin Chem Lett 2012;23:1161–64.
85. Mourelle D, Brigatte P, Bringanti LD, de Souza BM, Arcuri HA, Gomes PC, et al. Hyperalgesic and edematogenic effects of Secapin-2, a peptide isolated from Africanized honeybee (Apismellifera) venom. Peptides 2014;59:42-52.
86. Gauldie J, Hanson JM, Shipolini RA, Vernon CA. The structures of some peptides from bee venom. Eur J Biochem 1978;83:405–10.
87. Vick JA, Shipman WH, Brooks RJr. Beta adrenergic and anti-arrhythmic effects of cardiopep, a newly isolated substance from whole bee venom. Toxicon 1974;12:139–44.
88. Monsalve RI, Lu G, King TP. Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (V. annularis), in bacteria or yeast. Protein Expr Purif 1999;16:410–6.
89. Konno K, Hisada M, Fontana R, Lorenzi CC, Naoki H, Itagaki Y, et al. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anopliussamariensis. Biochim Biophys Acta 2001;1550:70–80.
90. Krishnakumari V, Nagaraj R. Antimicrobial and hemolytic activities of crabrolin, a 13-residue peptide from the venom of the European hornet, Vespa crabro, and its analogs. J Pept Res 1997;50:88-93.
91. Konno K, Rangel M, Oliveira JS, Dos Santos Cabrera MP, Fontana R, Hirata IY, et al. Decoralin, a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenesdecoratus. Peptides 2007;28:2320–7.
92. Konno K, Hisada M, Naoki H, Itagaki Y, Fontana R, Rangel M, et al. Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenesrubronotatus. Peptides 2006;27:2624–31.
93. Cerovsky V, Hovorka O, Cvacka J, Voburka Z, Bednarova L, Borovickova L, et al. A novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chembiochem 2008;9:2815–21.
94. Chionis K, Kostas Chionis, Dimitrios Krikorian, Anna Irini Koukkoun, Maria Sakarellos Daitsiotis, et al. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin. J Pept Sci 2016;22:731-6.
95. Primon Barros M, Animal Venom. Peptides: potential for new antimicrobial agents. Jose Macedo A. Curr Top Med Chem 2017;17:1119-56.
96. Kim Y, Yangseon Kim, Minky Son, Eun Young Noh, Soonok Kim, Changmu Kim, et al. MP-V1 from the venom of social wasp Vespula vulgaris Is a de novo type of mastoparan that displays superior antimicrobial activities; 2016.
97. Xinwang Yang, Ying Wang, Wen Hui Lee, Yun Zhang. Antimicrobial peptides from the venom gland of the social wasp Vespa Tropica. Toxicon 2013;74:151-7.
98. Jia F, Wang J, Peng J, Zhao P, Kong Z, Wang K, et al. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin (Shanghai) 2017;49:916-25.
99. Pak SC. An introduction to the toxins special issue on bee and wasp venoms: Biological characteristics and therapeutic application. Toxins (Basel); 2016.
100. Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel) 2015;7:1126-50.
101. Sample CJ, Hudak KE, Barefoot BE. A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides 2013;48:96-105.
102. Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier JM, Fajloun Z. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules 2019;24:2997.
103. Memariani H, Memariani M, Moravvej H, Shahidi Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur J Clin Microbiol Infect Dis 2020;39:5-17.
104. Agarwal G, Gabrani R. Antiviral peptides: identification and validation. Int J Pept Res Ther 2020;18:1-20.
105. Roskens VA, Carpenter JM, Pickett KM, Ballif BA. Preservation of field samples for enzymatic and proteomic characterization: analysis of proteins from the trophallactic fluid of hornets and yellow jackets. J Proteome Res 2010;9:5484-91.
106. Gonçalves J, Rangel M, Biolchi A, Alves E, Moreira K, Silva L, et al. Antinociceptive properties of the mastoparan peptide agelaia-MPI isolated from social wasps. Toxicon 2016;120:15-21.
107. Pucci L, Lucchesi D, Fotino C, Grupillo M, Miccoli R, Penno G, et al. Il polimorfismo PlA1/PlA2 dell'integrina Beta 3 non contribuisce al rischio di complicanze micro-e macrovascolarineldiabetetipo 1 e tipo 2 [Integrin Beta 3 PlA1/PlA2 polimorphism does not contribute to complications in both type 1 and type 2 diabetes]. G Ital Nefrol 2003;20:461-9.
108. Del Prato S, Tiengo A. The importance of first-phase insulin secretion: implications for the therapy of type 2 diabetes mellitus. Diabetes Metab Res Rev 2001;17:164-74.
109. Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin release mechanism modulated by toxins isolated from animal venoms: from basic research to drug development prospects. Molecules 2019;24:1846.
110. Hou, June Chunqiu. Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm 2009;80:473-506.
111. Melo da Cunha JDS, Alfredo TM, Dos Santos JM, Alves Junior VV, Rabelo LA, Lima ES, et al. Antioxidant, anti-hyperglycemic, and anti-diabetic activity of Apismellifera bee tea. PLoS One 2018. https://doi.org/10.1371/journal.pone.0197071
112. Mousavi SM, Imani S, Haghighi S, Mousavi SE, Karimi A. Effect of Iranian honey bee (Apismellifera) venom on blood glucose and insulin in diabetic rats. J Arthropod Borne Dis 2012;6:136-43.
113. Saba E, Shafeeq T, Irfan M. Anti-inflammatory activity of crude venom isolated from parasitoid wasp, Braconhebetor say. Mediators Inflamm 2017;697:81-94.
114. Seabrooks L, Hu L. Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharm Sin B 2017;7:409-26.
115. Bordon KCF, Cologna CT, Fornari Baldo EC. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front Pharmacol 2020;11:1132.
116. Cheon SY, Chung KS, Roh SS, Cha YY, An HJ. Bee venom suppresses the differentiation of preadipocytes and high fat diet-induced obesity by inhibiting adipogenesis. Toxins (Basel) 2018;10:9.
117. Mars J Yang, Wen Yuh Lin, Kuang Hui Lu, Wu Chun Tu. Evaluating anti-oxidative activities of amino acid substitutions on mastoparan-B. Peptides 2011;32:2037-43.
118. Jose Palmieri M, Ribeiro Barroso A, Fonseca Andrade Vieira L, Monteiro MC, Martins Soares A, Souza Cesar PH, et al. L. occidentalis and Polybiafastidiosa venom: a cytogenotoxic approach of effects on human and vegetal cells. Drug Chem Toxicol 2019. DOI:10.1080/01480545.2019.1631339
119. Schwartz EF, Elisabeth F Schwartz, Caroline BF Mourao, Karla G Moreira, Thalita S Camargos, et al. Arthropod venoms: a vast arsenal of insecticidal neuropeptide. Biopolymers 2012;98:385-405.
120. Henry TJ. Revision of the plant bug genus tytthus (hemiptera, heteroptera, miridae, phylinae). Zookeys 2012;220:1-114.
121. Kazuma K, Kohei Kazuma, Kenji Ando, Ken-Ichi Nihei, Xiaoyu Wang. Peptidomic analysis of the venom of the solitary bee Xylocopa Appendiculatacircumvolans. J Venom Animal Toxins Incl Trop Dis 2017;23:40.
122. Lopes KS, Kamila Soares Lopes, Gabriel Avohay, Alves Campos, Luana Cristina Camargo, Adolfo Carlos Barros de Souza, et al., Characterization of two peptides isolated from the venom of social wasp Chartergelluscommunis (Hymenoptera: Vespidae): influence of multiple alanine residues and c-terminal amidation on biological effects. Peptides 2017;95:84-93.
123. Deuis JR, Jennifer R Deuis, Alexander Mueller, Mathilde R Israel, Irina Vetter. The pharmacology of voltage-gated sodium channel activator. Neuropharmacology 2017;127:87-108.
124. Welton RE, Williams DJ, Liew D. Injury trends from envenoming in Australia, 2000-2013. Intern Med J 2017;47:170-6.
125. Graler MH, Goetzl EJ. Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim Biophys Acta 2002;1582:168–74.
126. Doery HM, Pearson JE. Phospholipase B in snake venoms and bee venom. Biochem J 1964;92:599–602.
127. Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007;80:1921–43.
128. Uzair B, Bushra Uzair, Rabia Bushra, Barkat AliKhan, Sarwat Zareen, Fehmida Fasim. Potential uses of venom proteins in treatment of HIV. Protein Pept Lett 2018;25:619-25.
129. Mendes MA, De Souza BM, Marques MR, Palma MS. Structural and biological characterization of two novel peptides from the venom of the neotropical social wasp Agelaia pallipespallipes. Toxicon 2004;44:67–74.
130. Han SM, Lee KG, Pak SC. Effects of cosmetics containing purified honeybee (Apismellifera L.) venom on acne vulgaris. J Integr Med 2013;11:320–6.
131. Cho SY, Shim SR, Rhee HY, Park HJ, Jung WS, Moon SK, et al. Effectiveness of acupuncture and bee venom acupuncture in idiopathic Parkinson’s disease. Parkinsonism Relat Disord 2012;18:948–52.
132. Alves EM, Heneine LGD, Pesquero JL, Albuquerque MLD. Pharmaceutical composition containin an apitoxin fraction and use there of WO2011041865; 2011;7:1126-15.
133. Lee MS, Pittler MH, Shin BC, Kong JC, Ernst E. Bee venom acupuncture for musculoskeletal pain: a review. J Pain 2008;9:289–97.
134. Huh J, Kang JW, Nam D, Baek YH, Choi DY, Park DS, et al. Melittin suppresses VEGF-a-induced tumor growth by blocking VEGFR-2 and the COX-2-mediated MAPK signaling pathway. J Nat Prod 2012;75:1922–9.
135. Yang X, Zhu H, Ge Y, Liu J, Cai J, Qin Q, et al. Melittin enhances radiosensitivity of hypoxic head and neck squamous cell carcinoma by suppressing HIF-1alpha. Tumour Biol 2014;35:10443–8.
136. Dunn RD, Weston KM, Longhurst TJ, Lilley GG, Rivett DE, Hudson PJ, et al. Antigen binding and cytotoxic properties of a recombinant immunotoxin incorporating the lytic peptide, melittin. Immunotechnology 1996;2:229–40.
137. Zhao X, Yu Z, Dai W, Yao Z, Zhou W, Zhou W, et al. Construction and characterization of an anti-asialoglycoproteinreceptor single-chain variable-fragment-targeted melittin. Biotechnol Appl Biochem 2011;58:405–11.
138. Jin H, Li C, Li D, Cai M, Li Z, Wang S, et al. Construction and characterization of a CTLA-4-targeted scFv-melittin fusion protein as a potential immune suppressive agent for organ transplant. Cell Biochem Biophys 2013;67:1067–74.
139. Holle L, Song W, Holle E, Wei Y, Wagner T, Yu X. A matrix metalloproteinase 2 cleavable melittin/avidin conjugate specifically targets tumor cells in vitro and in vivo. Int J Oncol 2003;22:93–8.
140. Holle L, Song W, Holle E, Wei Y, Li J, Wagner TE, et al. In vitro-and in vivo-targeted tumor lysis by an MMP2 cleavable melittin-LAP fusion protein. Int J Oncol 2009;35:829–35.
141. Yang L, Cui F, Shi K, Cun, Wang R. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique. Drug Dev Ind Pharm 2009;35:959–68.
142. Hu H, Chen D, Liu Y, Deng Y, Yang S, Qiao M, et al. Target ability and therapy efficacy of immune liposomes using a humanized anti-hepatoma disulfide-stabilized Fv fragment on tumor cells. J Pharm Sci 2006;95:192–9.
143. Barrajon Catalan, Menendez Gutierrez MP, Falco A, Carrato A, Saceda M, Micol V. Selective death of human breast cancer cells by lytic immune liposomes: correlation with their HER2 expression level. Cancer Lett 2010;290:192–203.
144. Popplewell JF, Swann MJ, Freeman NJ, McDonnell C, Ford RC. Quantifying the effects of melittin on liposomes. Biochim Biophys Acta 2007;1768:13–20.
145. Soman NR, Lanza GM, Heuser JM, Schlesinger PH, Wickline SA. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett 2008;8:1131–6.
146. Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, et al. Molecularly targeted nanocarriers deliver the cytolytic peptide melittinspecifically to tumor cells in mice, reducing tumor growth. J Clin Investig 2009;119:2830–42.
147. Schaper S, Wendt H, Bamberger J, Sieber V, Schmid J, Becker A. A bi-functional UDP-sugar 4-epimerase supports biosynthesis of multiple cell surface polysaccharides in Sinorhizobium meliloti. J Bacteriol 2019;201:801-18.
148. Müller UR. Bee venom allergy in beekeepers and their family members. Curr Opin Allergy ClinImmunol 2005;5:343-7.
149. Muller UR. Hymenoptera venom proteins and peptides for diagnosis and treatment of venom allergic patients. Inflamm Allergy Drug Targets 2011;10:420-8.
150. Heppt MV, Clanner Engelshofen BM, Marsela E, Wessely A, Kammerbauer C, Przybilla B, et al. Comparative analysis of the phototoxicity induced by BRAF inhibitors and alleviation through antioxidants. Photodermatol Photoimmunol Photomed 2020;36:126-34.
151. Becerril Angeles M, Nunez Velazquez M, Marin Martinez J, Grupo del Programa, Nacional de Control de la Abeja, Africanizada SAGARPA. Valoracion median epruebascutaneas de la hipersensibilidad al veneno de abeja en apicultores [Assessment of hypersensitivity to honey-bee venom in beekeepers by skin tests]. Rev Alerg Mex 2013;60:164-7.
152. Munstedt K. Using bee products for the prevention and treatment of oral mucositis induced by cancer treatment. Molecules 2019;24:3023.
153. Wu TM, Li ML. The cytolytic action of all-D mastoparan M on tumor cell lines. Int J Tissue React 1999;21:35–42.
154. Wu CW, Kirshenbaum K, Sanborn TJ, Patch JA, Huang K, Dill KA, et al. Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains. J Am Chem Soc 2003;125:13525-30.
155. Hussein AA, Nabil ZI, Zalat SM, Rakha MK. Comparative study of the venoms from three species of bees: effects on heart activity and blood. J Nat Toxins 2001;10:343-57.
156. Lambeau G, Ancian P, Nicolas JP, Beiboer SH, Moinier D, Verheij H, et al. Structural elements of secretory phospholipases A2 involved in the binding to M-type receptors. J Biol Chem 1995;270:5534-40.
157. Christen V, Mittner F, Fent K. Molecular effects of neonicotinoids in honey bees (Apis mellifera). Environ Sci Technol 2016;50:4071-81.
158. Mohammed SEA, Kabbashi AS, Koko WS, Ansari MJ, Adgaba N, Al-Ghamdi A. In vitro activity of some natural honeys against Entamoeba histolytica and Giardia lamblia trophozoites. Saudi J Biol Sci 2019;26:238-43.
159. Ahmad F, Seerangan P, Mustafa MZ, Osman ZF, Abdullah JM, Idris Z. Anti-cancer properties of Hetero trigonaitama sp. honey via Induction of apoptosis in malignant glioma cells. Malays J Med Sci 2019;26:30-9.
160. Shiassi Arani F, Karimzadeh L, Ghafoori SM, Nabiuni M. Anti-mutagenic and synergistic cytotoxic effect of cisplatin and honey bee venom on 4T1 invasive mammary carcinoma cell line. Adv Pharmacol Sci 2019;758:13-8.
161. Seyhan MF, Y?lmaz E, Timirci Kahraman O, Sayg?l? N, K?sakesen H?, Eronat AP, et al. Anatolian honey is not only sweet but can also protect from breast cancer: elixir for women from artemis to present. IUBMB Life 2017;69:677-88.
162. Uddin MB. Inhibitory effects of bee venom and its components against viruses in vitro in vivo. J Microbiol 2016;54:853-66.
163. Brudzynski K. Antibacterial compounds of canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of ?-Lactam. Antibiotics 2014;9:e106967.
164. Kustiawan PM. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. J Trop Biomed 2014;4:549-56.
165. Moskwa J. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line. PLOS ONE 2014. https://doi.org/10.1371/journal.pone.0090533
166. Park D. Chemotherapy resistance in diffuse-type gastric adenocarcinoma is mediated by RhoA activation in cancer stem-like cells. Clin Cancer Res 2016;22:971-83.
167. Panda S, I Ehsan. Molecular docking studies of snake venom serine protease of sharp–nosed pit viper with hesperetin. Asian J Pharm Clin Res 2018;11:457-61.
168. Hymenoptera–Wikipedia. Available from: https://en.wikipedia.org/wiki/Hymenoptera [Last accessed on 05 Nov 2020]
169. Hymenopteran | insect | Britannica. Available from: www.britannica.com [Last accessed on 05 Nov 2020]
170. Donald R. Hoffman, in encyclopedia of immunology. (Second Edition); 1998.
171. Baek JH, Lee SH. Identification and characterization of venom proteins of two solitary wasps. Toxicon 2010;56:554–62.
172. Kumar RB, MX Suresh. Neurotox: a unique database for animal neurotoxins. Int J Pharm Pharm Sci 2015;7:351-4.
173. Preet P. Peptides: a new therapeutic approach. Int J Curr Pharm Res 2018;10:29-34.
174. Baek JH, Woo TH, Kim CB. Differential gene expression profiles in the venomgland/sac of Orancistrocerusdrewseni (Hymenoptera: Eumenidae). Arch Insect Biochem Physiol 2009;71:205–22.
175. Baek JH, Lee SH. Differential gene expression profiles in the venom gland/sac of Eumenes pomiformis (Hymenoptera: Eumenidae). Toxicon 2010;55:1147–56.
176. Dos Santos LD, Santos KS, Pinto JRA. Profiling the proteome of the venom from the social wasp Polybia paulista: a clue to understand the envenoming mechanism. J Proteome Res 2010;9:3867–77.
177. Liu ZR, Chen SG, Zhou Y. Deciphering the venomicranscriptome of killer-wasp Vespa velutina. Sci Rep 2015;5:9454.
178. Yoon KA, Kim K, Nguyen P. Comparative bioactivities of mastoparans from social hornets Vespa crabro and Vespa analis. J Asia Pac Entomol 2015;18:825–9.
179. Konno K, Hisada M, Itagaki Y. Isolation and structure of pompilidotoxins, novel peptide neurotoxins in solitary wasp venoms. Biochem Biophys Res Commun 1998;250:612–6.
180. Asawale KY, MC Mehta, PSUike. Drug utilization analysis of anti-snake venom at a tertiary care centre in central Maharasthtra: a 3y retrospective study. Asian J Pharm Clin Res 2018;11:134-7.
181. Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel) 2015;7:1126-50.
156 Views | 191 Downloads
How to Cite
SHARMA, S., and R. K. UPADHYAY. “HYMENOPTERA TOXINS: BIOLOGICAL ACTIVITY, PHARMACEUTICAL AND THERAPEUTIC USES”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 13, no. 4, Feb. 2021, pp. 8-20, doi:10.22159/ijpps.2021v13i4.40473.
Review Article(s)